Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.389
Filtrar
1.
J Drugs Dermatol ; 23(5): e134-e136, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709689

RESUMO

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease that generates multiple cytokines. Here, we present an example of the cytokines forming a cytokine storm and its effects on the patient. CASE PRESENTATION: We report the case of a 55-year-old man who had severe but stable HS. Serum samples were collected from the patient and extraordinarily elevated cytokine concentrations were identified in the patient's serum.  Conclusion: Cytokine storms may be a condition associated with HS posing additional risk to patient survival. J Drugs Dermatol. 2024;23(5):e134-e136.     doi:10.36849/JDD.7860R1e.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/imunologia , Hidradenite Supurativa/diagnóstico , Hidradenite Supurativa/sangue , Hidradenite Supurativa/complicações , Masculino , Pessoa de Meia-Idade , Citocinas/sangue , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/sangue , Índice de Gravidade de Doença
2.
J Immunol ; 212(10): 1523-1529, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709994

RESUMO

The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.


Assuntos
COVID-19 , Calgranulina A , Calgranulina B , Inflamação , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Inflamação/imunologia , Síndrome da Liberação de Citocina/imunologia , Viroses/imunologia
3.
Cell Biochem Funct ; 42(4): e4026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693631

RESUMO

This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.


Assuntos
Colecalciferol , Infecções por Escherichia coli , Escherichia coli , Raios gama , Animais , Camundongos , Colecalciferol/farmacologia , Masculino , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Aspartato Aminotransferases/sangue
4.
Radiographics ; 44(6): e230069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696321

RESUMO

Cytokines are small secreted proteins that have specific effects on cellular interactions and are crucial for functioning of the immune system. Cytokines are involved in almost all diseases, but as microscopic chemical compounds they cannot be visualized at imaging for obvious reasons. Several imaging manifestations have been well recognized owing to the development of cytokine therapies such as those with bevacizumab (antibody against vascular endothelial growth factor) and chimeric antigen receptor (CAR) T cells and the establishment of new disease concepts such as interferonopathy and cytokine release syndrome. For example, immune effector cell-associated neurotoxicity is the second most common form of toxicity after CAR T-cell therapy toxicity, and imaging is recommended to evaluate the severity. The emergence of COVID-19, which causes a cytokine storm, has profoundly impacted neuroimaging. The central nervous system is one of the systems that is most susceptible to cytokine storms, which are induced by the positive feedback of inflammatory cytokines. Cytokine storms cause several neurologic complications, including acute infarction, acute leukoencephalopathy, and catastrophic hemorrhage, leading to devastating neurologic outcomes. Imaging can be used to detect these abnormalities and describe their severity, and it may help distinguish mimics such as metabolic encephalopathy and cerebrovascular disease. Familiarity with the neuroimaging abnormalities caused by cytokine storms is beneficial for diagnosing such diseases and subsequently planning and initiating early treatment strategies. The authors outline the neuroimaging features of cytokine-related diseases, focusing on cytokine storms, neuroinflammatory and neurodegenerative diseases, cytokine-related tumors, and cytokine-related therapies, and describe an approach to diagnosing cytokine-related disease processes and their differentials. ©RSNA, 2024 Supplemental material is available for this article.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Neuroimagem , SARS-CoV-2 , Humanos , Neuroimagem/métodos , Síndrome da Liberação de Citocina/diagnóstico por imagem , Síndrome da Liberação de Citocina/etiologia , COVID-19/diagnóstico por imagem , Citocinas
5.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732213

RESUMO

Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable, and its incidence is rising. Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a novel treatment, with the potential to improve the survival and quality of life of patients with relapsed/refractory multiple myeloma (rrMM). In this systematic review and meta-analysis, conducted in accordance with PRISMA guidelines, we aim to provide a concise overview of the latest developments in CAR-T therapy, assess their potential implications for clinical practice, and evaluate their efficacy and safety outcomes based on the most up-to-date evidence. A literature search conducted from 1 January 2019 to 12 July 2023 on Medline/PubMed, Scopus, and Web of Science identified 2273 articles, of which 29 fulfilled the specified criteria for inclusion. Our results offer robust evidence supporting CAR-T cell therapy's efficacy in rrMM patients, with an encouraging 83.21% overall response rate (ORR). A generally safe profile was observed, with grade ≥ 3 cytokine release syndrome (CRS) at 7.12% and grade ≥ 3 neurotoxicity at 1.37%. A subgroup analysis revealed a significantly increased ORR in patients with fewer antimyeloma regimens, while grade ≥ 3 CRS was more common in those with a higher proportion of high-risk cytogenetics and prior exposure to BCMA therapy.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Qualidade de Vida , Recidiva Local de Neoplasia/terapia , Síndrome da Liberação de Citocina/etiologia
6.
Ann Med ; 56(1): 2349796, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738799

RESUMO

BACKGROUND: Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS: The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS: Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION: Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Antígenos CD19/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Receptores de Antígenos Quiméricos/imunologia , Criança , Resultado do Tratamento , Neoplasia Residual , Síndrome da Liberação de Citocina/etiologia , Recidiva , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia
7.
Cancer Immunol Immunother ; 73(6): 104, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630258

RESUMO

Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.


Assuntos
Síndromes Neurotóxicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Síndrome da Liberação de Citocina , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Terapia Baseada em Transplante de Células e Tecidos
8.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581382

RESUMO

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Assuntos
Encefalite Japonesa , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/imunologia , Encefalite Japonesa/microbiologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Análise de Sobrevida , Quimiocinas/imunologia , Quimiocinas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Humanos , Feminino , Animais , Camundongos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Carga Viral/efeitos dos fármacos , Fatores de Tempo
9.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38607370

RESUMO

Cytokine release syndrome (CRS) is a frequently observed side effect of chimeric antigen receptor (CAR)-T cell therapy. Here, we report self-regulating T cells that reduce CRS severity by secreting inhibitors of cytokines associated with CRS. With a humanized NSG-SGM3 mouse model, we show reduced CRS-related toxicity in mice treated with CAR-T cells secreting tocilizumab-derived single-chain variable fragment (Toci), yielding a safety profile superior to that of single-dose systemic tocilizumab administration. Unexpectedly, Toci-secreting CD19 CAR-T cells exhibit superior in vivo antitumor efficacy compared with conventional CD19 CAR-T cells. scRNA-seq analysis of immune cells recovered from tumor-bearing humanized mice revealed treatment with Toci-secreting CD19 CAR-T cells enriches for cytotoxic T cells while retaining memory T-cell phenotype, suggesting Toci secretion not only reduces toxicity but also significantly alters the overall T-cell composition. This approach of engineering T cells to self-regulate inflammatory cytokine production is a clinically compatible strategy with the potential to simultaneously enhance safety and efficacy of CAR-T cell therapy for cancer.


Assuntos
Síndrome da Liberação de Citocina , Citocinas , Animais , Camundongos , Síndrome da Liberação de Citocina/etiologia , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos
10.
Am J Case Rep ; 25: e941835, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625840

RESUMO

BACKGROUND CRS (cytokine release syndrome) is a massive activation of the inflammatory system characterized by a supra-physiological rate of inflammatory cytokines. The interleukin 6 cytokine plays a central role in CRS. The main clinical sign of CRS is fever, but CRS can lead to multiple organ failure in severe cases. CRS is usually described in sepsis, more recently in SARS COV-2 infection, and in chimeric antigen receptor T-cell therapy. However, it can also be associated with immune checkpoint inhibitors (ICIs), which is infrequently described. ICI have growing indications and can lead to CRS by causing an uncontrolled activation of the immune system. There are currently no treatment guidelines for ICI-induced CRS. CASE REPORT We report a rare case of grade 3 CRS induced by nivolumab associated with 5-fluorouracil and oxaliplatin for gastric cancer. The patient was 65-year-old man with an adenocarcinoma of the cardia. CRS developed during the tenth course of treatment and was characterized by fever, hypotension requiring vasopressors, hypoxemia, acute kidney injury, and thrombopenia. The patient was transferred quickly to the Intensive Care Unit. He was treated for suspected sepsis, but it was ruled out after multiple laboratory examinations. There was rapid resolution after infusion of hydrocortisone. CONCLUSIONS The use of ICIs is expanding. Nivolumab-induced CRS is rarely described but can be severe and lead to multiple organ dysfunction; therefore, intensive care practitioners should be informed about this adverse effect. More studies are needed to better understand this condition and establish treatment guidelines.


Assuntos
COVID-19 , Sepse , Masculino , Humanos , Idoso , Síndrome da Liberação de Citocina/induzido quimicamente , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Nivolumabe/efeitos adversos , Citocinas
11.
Sci Rep ; 14(1): 8781, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627497

RESUMO

SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/fisiologia , Células Endoteliais , Síndrome da Liberação de Citocina , Macrófagos , Organoides
12.
Reumatol Clin (Engl Ed) ; 20(4): 223-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644032

RESUMO

Paraguay is currently facing a new outbreak of Chikungunya virus. This report summarizes two severe cases of Chikungunya (CHIKV) infection, confirmed by real-time reverse transcription polymerase chain reaction. We present the cases of patients with acute CHIKV infection and multisystem involvement, with fever, rash, abdominal pain, vomiting, myocarditis, and coronary artery anomalies, very similar to the cases described in MIS-C related to SARS-CoV-2 during the COVID-19 Pandemic. Both patients received IVIG and methylprednisolone, with good clinical response. In this setting of cytokine storm in Chikungunya, can we call it "Multisystem inflammatory syndrome associated with Chikungunya"?.


Assuntos
Febre de Chikungunya , Síndrome da Liberação de Citocina , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Masculino , Síndrome da Liberação de Citocina/etiologia , Feminino , Adulto , Pessoa de Meia-Idade
13.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38588525

RESUMO

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Linfo-Histiocitose Hemofagocítica , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/terapia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Animais
14.
Br J Hosp Med (Lond) ; 85(3): 1-12, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557089

RESUMO

Haemophagocytic lymphohistiocytosis is a severe systemic hyperinflammatory syndrome characterised by dysregulation of immune cells and excessive production of cytokines, also known as a cytokine storm. It has distinctive clinical features with fever, hyperferritinaemia and falling blood counts. In adults, this usually occurs secondary to an underlying driver or trigger including infection, malignancy or rheumatic diseases. Prompt treatment with immunomodulatory therapy, including corticosteroids and the recombinant IL-1 receptor antagonist anakinra, is recommended to switch off the cytokine storm. Etoposide-based regimens are sometimes needed, and newer therapies such as emapalumab and JAK inhibitors are increasingly being used. The incidence of haemophagocytic lymphohistiocytosis has increased significantly over the last 20 years which may partly reflect increased awareness of the condition. Although relatively rare, haemophagocytic lymphohistiocytosis can be encountered by a broad range of hospital physicians, so knowing how to diagnose and treat this condition is essential. This article reviews the pathogenesis, clinical features, causes, diagnosis and treatment of haemophagocytic lymphohistiocytosis to improve physician recognition and management of this condition to improve future patient outcomes.


Assuntos
Linfo-Histiocitose Hemofagocítica , Neoplasias , Adulto , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/etiologia , Síndrome da Liberação de Citocina , Neoplasias/complicações , Corticosteroides , Diagnóstico Diferencial
15.
Viruses ; 16(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675991

RESUMO

Tumor necrosis factor (TNF) and interferon-gamma (IFNγ) are important inflammatory mediators in the development of cytokine storm syndrome (CSS). Single nucleotide polymorphisms (SNPs) regulate the expression of these cytokines, making host genetics a key factor in the prognosis of COVID-19. In this study, we investigated the associations of the TNF -308G/A and IFNG +874T/A polymorphisms with COVID-19. We analyzed the frequencies of the two polymorphisms in the control groups (CG: TNF -308G/A, n = 497; IFNG +874T/A, n = 397), a group of patients with COVID-19 (CoV, n = 222) and among the subgroups of patients with nonsevere (n = 150) and severe (n = 72) COVID-19. We found no significant difference between the genotypic and allelic frequencies of TNF -308G/A in the groups analyzed; however, both the frequencies of the high expression genotype (TT) (CoV: 13.51% vs. CG: 6.30%; p = 0.003) and the *T allele (CoV: 33.56% vs. CG: 24. 81%; p = 0.001) of the IFNG +874T/A polymorphism were higher in the COVID-19 group than in the control group, with no differences between the subgroups of patients with nonsevere and severe COVID-19. The *T allele of IFNG +874T/A (rs2430561) is associated with susceptibility to symptomatic COVID-19. These SNPs provided valuables clues about the potential mechanism involved in the susceptibility to developing symptomatic COVID-19.


Assuntos
COVID-19 , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Interferon gama , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Fator de Necrose Tumoral alfa , Humanos , COVID-19/genética , COVID-19/virologia , Interferon gama/genética , Feminino , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Fator de Necrose Tumoral alfa/genética , Idoso , Adulto , Alelos , Síndrome da Liberação de Citocina/genética
16.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589976

RESUMO

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Assuntos
Bacteriemia , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Humanos , Animais , Coelhos , Camundongos , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Proteínas Proto-Oncogênicas c-akt , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/veterinária , Pulmão/patologia , Bacteriemia/veterinária , Bacteriemia/patologia , Apoptose , Mamíferos , Proteína Forkhead Box O1
17.
J Immunother ; 47(5): 160-171, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562119

RESUMO

SUMMARY: T-cell-directed cancer therapies such as T-cell-engaging bispecifics (TCBs) are commonly associated with cytokine release syndrome and associated clinical signs that can limit their tolerability and therapeutic benefit. Strategies for reducing cytokine release are therefore needed. Here, we report on studies performed in cynomolgus monkeys to test different approaches for mitigating cytokine release with TCBs. A "priming dose" as well as subcutaneous dosing reduced cytokine release compared with intravenous dosing but did not affect the intended T-cell response to the bispecific. As another strategy, cytokines or cytokine responses were blocked with an anti-IL-6 antibody, dexamethasone, or a JAK1/TYK2-selective inhibitor, and the effects on toxicity as well as T-cell responses to a TCB were evaluated. The JAK1/TYK2 inhibitor and dexamethasone prevented CRS-associated clinical signs on the day of TCB administration, but the anti-IL-6 had little effect. All interventions allowed for functional T-cell responses and expected damage to target-bearing tissues, but the JAK1/TYK2 inhibitor prevented the upregulation of activation markers on T cells, suggesting the potential for suppression of T-cell responses. Our results suggest that short-term prophylactic dexamethasone treatment may be an effective option for blocking cytokine responses without affecting desired T-cell responses to TCBs.


Assuntos
Anticorpos Biespecíficos , Citocinas , Macaca fascicularis , Linfócitos T , Animais , Anticorpos Biespecíficos/farmacologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Citocinas/metabolismo , Dexametasona/farmacologia , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Interleucina-6/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico
18.
Clin Pharmacol Ther ; 115(6): 1258-1268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459622

RESUMO

B-cell maturation antigen (BCMA)-targeting immunotherapies (e.g., chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAbs)) have achieved remarkable clinical responses in patients with relapsed and/or refractory multiple myeloma (RRMM). Their use is accompanied by exaggerated immune responses related to T-cell activation and cytokine elevations leading to cytokine release syndrome (CRS) in some patients, which can be potentially life-threatening. However, systematic evaluation of the risk of CRS with BCMA-targeting BsAb and CAR-T therapies, and comparisons across different routes of BsAb administration (intravenous (i.v.) vs. subcutaneous (s.c.)) have not previously been conducted. This study utilized a meta-analysis approach to compare the CRS profile in BCMA-targeting CAR-T vs. BsAb immunotherapies administered either i.v. or s.c. in patients with RRMM. A total of 36 studies including 1,560 patients with RRMM treated with BCMA-targeting CAR-T and BsAb therapies were included in the analysis. The current analysis suggests that compared with BsAbs, CAR-T therapies were associated with higher CRS incidences (88% vs. 59%), higher rates of grade ≥ 3 CRS (7% vs. 2%), longer CRS duration (5 vs. 2 days), and more prevalent tocilizumab use (44% vs. 25%). The proportion of CRS grade ≥ 3 may also be lower (0% vs. 4%) for BsAb therapies administered via the s.c. (3 studies, n = 311) vs. i.v. (5 studies, n = 338) route. This meta-analysis suggests that different types of BCMA-targeting immunotherapies and administration routes could result in a range of CRS incidence and severity that should be considered while evaluating the benefit-risk profiles of these therapies.


Assuntos
Anticorpos Biespecíficos , Antígeno de Maturação de Linfócitos B , Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/efeitos adversos , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Injeções Subcutâneas , Receptores de Antígenos Quiméricos/imunologia , Administração Intravenosa
19.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442142

RESUMO

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Assuntos
Síndrome da Liberação de Citocina , Interleucina-4 , Animais , Camundongos , Receptores X do Fígado , Leucina/farmacologia , Lipopolissacarídeos , Citocinas , Transdução de Sinais , Macrófagos , Alvo Mecanístico do Complexo 1 de Rapamicina
20.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543837

RESUMO

SARS-CoV-2 infection has claimed just over 1.1 million lives in the US since 2020. Globally, the SARS-CoV-2 respiratory infection spread to 771 million people and caused mortality in 6.9 million individuals to date. Much of the early literature showed that SARS-CoV-2 immunity was defective in the early stages of the pandemic, leading to heightened and, sometimes, chronic inflammatory responses in the lungs. This lung-associated 'cytokine storm' or 'cytokine release syndrome' led to the need for oxygen supplementation, respiratory distress syndrome, and mechanical ventilation in a relatively high number of people. In this study, we evaluated circulating PBMC from non-hospitalized, male and female, COVID-19+ individuals over the course of infection, from the day of diagnosis (day 0) to one-week post diagnosis (day 7), and finally 4 weeks after diagnosis (day 28). In our early studies, we included hospitalized and critically care patient PBMC; however, most of these individuals were lymphopenic, which limited our assessments of their immune integrity. We chose a panel of 30 interferon-stimulated genes (ISG) to evaluate by PCR and completed flow analysis for immune populations present in those PBMC. Lastly, we assessed immune activation by stimulating PBMC with common TLR ligands. We identified changes in innate cells, primarily the innate lymphoid cells (ILC, NK cells) and adaptive immune cells (CD4+ and CD8+ T cells) over this time course of infection. We found that the TLR-7 agonist, Resiquimod, and the TLR-4 ligand, LPS, induced significantly better IFNα and IFNγ responses in the later phase (day 28) of SARS-CoV-2 infection in those non-hospitalized COVID-19+ individuals as compared to early infection (day 0 and day 7). We concluded that TLR-7 and TLR-4 agonists may be effective adjuvants in COVID-19 vaccines for mounting immunity that is long-lasting against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , SARS-CoV-2/genética , Pandemias , Imunidade Inata , Vacinas contra COVID-19 , Receptor 4 Toll-Like/genética , Leucócitos Mononucleares , Receptor 7 Toll-Like , Linfócitos , Interferons , Síndrome da Liberação de Citocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...