Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 99: 385-391, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27585947

RESUMO

Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.


Assuntos
Síndrome de Cockayne/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Estresse Oxidativo , Xeroderma Pigmentoso/urina , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/urina , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Nucleotídeos de Desoxiguanina/metabolismo , Desoxiguanosina/urina , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
2.
Tohoku J Exp Med ; 239(3): 231-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396511

RESUMO

Nucleotide excision repair (NER) is an essential biological pathway protecting against ultraviolet light-induced DNA damage. Deficient NER causes a group of rare genetic disorders including two autosomal recessive diseases, xeroderma pigmentosum (XP) and Cockayne syndrome (CS). In addition to the cutaneous photosensitivity shared in XP and CS, CS is featured by growth failure, neurological deterioration, microcephaly, and deep sunken eyes. XP/CS complex is an extremely rare type of NER disorder with a distinct phenotype that is characterized by the skin and eye pathology of XP and the somatic and neurological abnormalities of CS. Some of CS cases have been reported to be complicated with renal failure, but the genetic background or the etiology of the renal failure has not been reported. We herein report a 1-year-old Japanese boy with XP/CS complex, complicated by nephrotic syndrome. Diagnosis was confirmed by the presence of compound heterozygous mutations, G47R (c.139G>A) and R616G (c.1846C>G), in the excision repair cross-complementation group 2 (ERCC2) gene. The kidney biopsies, performed at the age of 1 year and 2 months, revealed diffuse expansion of the mesangial matrix and segmental glomerulosclerosis under light microscopy, and diffused thin capillary walls with partially lamellated regions under electron microscopy. Notably, high levels of urinary 8-hydroxy-2'-deoxyguanosin, known as an oxidative stress marker, were observed during the clinical course. The patient died at the age of 1 year and 11 months because of renal failure. We suggest the involvement of oxidative stress in the pathogenesis of nephrotic syndrome in NER disorders.


Assuntos
Síndrome de Cockayne/complicações , Síndrome de Cockayne/urina , Desoxiguanosina/análogos & derivados , Síndrome Nefrótica/complicações , Síndrome Nefrótica/urina , Xeroderma Pigmentoso/complicações , Xeroderma Pigmentoso/urina , 8-Hidroxi-2'-Desoxiguanosina , Idade de Início , Sequência de Bases , Criança , Síndrome de Cockayne/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Desoxiguanosina/urina , Evolução Fatal , Humanos , Lactente , Japão , Rim/patologia , Rim/ultraestrutura , Masculino , Síndrome Nefrótica/genética , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA