Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956053

RESUMO

Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Síndrome de Smith-Magenis , Transativadores , Fatores de Transcrição , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/genética , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Crescimento Neural/metabolismo , Peso Corporal
2.
J Biol Chem ; 299(1): 102728, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410433

RESUMO

Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.


Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiência , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Obesidade/genética
3.
Hum Mol Genet ; 31(2): 275-288, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34463714

RESUMO

Haploinsufficiency of retinoic acid-induced 1 (RAI1) is responsible for Smith-Magenis syndrome (SMS), a childhood neurodevelopmental disorder associated with hyperphagia, obesity and autistic features. We previously showed that constitutive inactivation of one or both copies of Rai1 in the germline or developing brain induces SMS-like neurobehavioral deficits and obesity in mice. By contrast, the postnatal function of Rai1 is unclear. Here, we globally deleted one or both copies of Rai1 during two postnatal developmental windows by generating an inducible Rai1 knockout mouse model. We found that delayed Rai1 deletion at 3 or 8 weeks of age had no effect on neurobehavioral functions but resulted in adult-onset obesity and decreased expression of brain-derived neurotrophic factor (Bdnf) in the hypothalamus. Remarkably, genetic overexpression of human Bdnf in Rai1 heterozygous mice reversed SMS-like obesity, hyperphagia, metabolic syndrome-like features and hyposociability. Increasing Bdnf signaling in the paraventricular nucleus of the hypothalamus or the ventromedial nucleus of the hypothalamus was sufficient to mediate the anti-obesity effect. Our work identifies the function of Rai1 in different temporal windows after birth and provides in vivo evidence that increasing Bdnf signaling is therapeutically effective in a preclinical mouse model of SMS.


Assuntos
Síndrome de Smith-Magenis , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Heterozigoto , Camundongos , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
5.
CNS Drugs ; 34(7): 723-730, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32495322

RESUMO

Smith-Magenis syndrome is a genetic disorder caused by a microdeletion involving the retinoic acid-induced 1 (RAI1) gene that maps on the short arm of chromosome 17p11.2 or a pathogenic mutation of RAI1. Smith-Magenis syndrome affects patients through numerous congenital anomalies, intellectual disabilities, behavioral challenges, and sleep disturbances. The sleep abnormalities associated with Smith-Magenis syndrome can include frequent nocturnal arousals, early morning awakenings, and sleep attacks during the day. The sleep problems associated with Smith-Magenis syndrome are attributed to haploinsufficiency of the RAI1 gene. One consequence of reduced function of RAI1, and characteristic of Smith-Magenis syndrome, is an inversion of melatonin secretion resulting in a diurnal rather than nocturnal pattern. Treatment of sleep problems in people with Smith-Magenis syndrome generally involves a combination of sleep hygiene techniques, supplemental melatonin, and/or other medications, such as melatonin receptor agonists, ß1-adrenergic antagonists, and stimulant medications, to improve sleep outcomes. Improvement in sleep has been shown to improve behavioral outcomes, which in turn improves the quality of life for both patients and their caregivers.


Assuntos
Melatonina/farmacologia , Melatonina/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Sono/efeitos dos fármacos , Síndrome de Smith-Magenis/tratamento farmacológico , Animais , Humanos , Melatonina/metabolismo , Mutação/genética , Qualidade de Vida , Sono/genética , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/metabolismo , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo
6.
Br J Haematol ; 188(5): 736-739, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31588562

RESUMO

Limited data are available on the incidence and impact of TP53 alterations and TP53 pathway deregulation in paediatric acute myeloid leukaemia (AML). We analysed TP53 alterations in bone marrow samples of 229 patients with de novo paediatric AML, and detected heterozygous missense exon mutations in two patients (1%) and 17p deletions of the TP53 gene in four patients (2%). These patients more frequently had complex karyotype (50% vs. 4%, P = 0·002) or adverse cytogenetic abnormalities, including complex karyotype (67% vs. 17%, P = 0·013), compared to TP53 wild-type. Differential expression of TP53 pathway genes was associated with poor survival, indicating a role for TP53 regulators and effector genes.


Assuntos
Deleção Cromossômica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Mutação , Transdução de Sinais , Síndrome de Smith-Magenis , Proteína Supressora de Tumor p53 , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Síndrome de Smith-Magenis/mortalidade , Taxa de Sobrevida , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
7.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330985

RESUMO

Smith-Magenis syndrome (SMS), linked to Retinoic Acid Induced (RAI1) haploinsufficiency, is a unique model of the inversion of circadian melatonin secretion. In this regard, this model is a formidable approach to better understand circadian melatonin secretion cycle disorders and the role of the RAI1 gene in this cycle. Sleep-wake cycle disorders in SMS include sleep maintenance disorders with a phase advance and intense sleepiness around noon. These disorders have been linked to a general disturbance of sleep-wake rhythm and coexist with inverted secretion of melatonin. The exact mechanism underlying the inversion of circadian melatonin secretion in SMS has rarely been discussed. We suggest three hypotheses that could account for the inversion of circadian melatonin secretion and discuss them. First, inversion of the circadian melatonin secretion rhythm could be linked to alterations in light signal transduction. Second, this inversion could imply global misalignment of the circadian system. Third, the inversion is not linked to a global circadian clock shift but rather to a specific impairment in the melatonin secretion pathway between the suprachiasmatic nuclei (SCN) and pinealocytes. The development of diurnal SMS animal models that produce melatonin appears to be an indispensable step to further understand the molecular basis of the circadian melatonin secretion rhythm.


Assuntos
Suscetibilidade a Doenças , Melatonina/biossíntese , Síndrome de Smith-Magenis/etiologia , Síndrome de Smith-Magenis/metabolismo , Animais , Mapeamento Cromossômico , Ritmo Circadiano , Predisposição Genética para Doença , Humanos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Síndrome de Smith-Magenis/diagnóstico
8.
Diagn Cytopathol ; 47(9): 930-934, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31120625

RESUMO

Primary thyroid teratomas are rare, usually benign, and typically occur in children. We report the unusual occurrence of a malignant thyroid teratoma in a young man. Initial ultrasound and CT studies revealed an 8.5 heterogeneous mass involving the entire right thyroid lobe causing tracheal compression and deviation. Fine-needle aspiration (FNA) revealed malignant cells with possible neuroendocrine features. Similar findings have been previously reported, with an occasional interpretation as possible medullary thyroid carcinoma. In no report, as with our case, has the correct diagnosis been suggested with FNA. The surgical specimen contained abundant primitive neuroepithelium with a very minor component of mature ectodermal tissue in one area. Like this case, an abundance of immature neuroepithelium has been reported in essentially all previous reports of primary malignant thyroid teratoma, sometimes creating a challenge to find another type of germ cell tissue. Array comparative genomic hybridization studies in this case revealed a markedly complex karyotype including gain of chromosome 12 and loss of 17p. Amplification of MYCN, EWSR1 rearrangement and isochromosome 12p were not identified, providing no evidence for neuroblastoma or Ewing sarcoma/peripheral neuroectodermal tumor, both of which have also rarely been reported as primary thyroid tumors. With the use of cisplatinum-based chemotherapy combined with radiation, survival times have increased dramatically. Our patient is now disease free and back to his normal activities after relatively short follow-up. Although rare, it is important to be aware that teratomas may present as a thyroid nodule. Recognition by FNA is challenging, and requires multiple modalities for full identification.


Assuntos
Quimiorradioterapia , Cisplatino/administração & dosagem , Teratoma , Neoplasias da Glândula Tireoide , Adolescente , Biópsia por Agulha Fina , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 12/metabolismo , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/metabolismo , Humanos , Masculino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Síndrome de Smith-Magenis/patologia , Síndrome de Smith-Magenis/terapia , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Teratoma/terapia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia
10.
Sci Rep ; 6: 19010, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743651

RESUMO

RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5'-upstream region. Using genotype imputation, "R(2)-Δ(2)" analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30-40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5'-region regulatory variants contribute more generally to psychiatric disorders.


Assuntos
Anormalidades Múltiplas/genética , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Proteínas Nucleares/genética , RNA Mensageiro/genética , Receptores X de Retinoides/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Sequência de Bases , Linhagem Celular Tumoral , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/patologia , Proteínas de Ligação a DNA , Dosagem de Genes , Regulação da Expressão Gênica , Genótipo , Técnicas de Genotipagem , Humanos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Síndrome de Smith-Magenis/metabolismo , Síndrome de Smith-Magenis/patologia , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Transativadores , Fatores de Transcrição/metabolismo
11.
PLoS Genet ; 8(5): e1002713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654670

RESUMO

The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP-associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits.


Assuntos
Variações do Número de Cópias de DNA/genética , Obesidade , Síndrome de Smith-Magenis , Transativadores/metabolismo , Anormalidades Múltiplas , Animais , Peso Corporal , Deleção Cromossômica , Transtornos Cromossômicos , Duplicação Cromossômica , Dieta Hiperlipídica , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética
12.
Am J Hum Genet ; 90(6): 941-9, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22578325

RESUMO

Haploinsufficiency of RAI1 results in Smith-Magenis syndrome (SMS), a disorder characterized by intellectual disability, multiple congenital anomalies, obesity, neurobehavioral abnormalities, and a disrupted circadian sleep-wake pattern. An inverted melatonin rhythm (i.e., melatonin peaks during the day instead of at night) and associated sleep-phase disturbances in individuals with SMS, as well as a short-period circadian rhythm in mice with a chromosomal deletion of Rai1, support SMS as a circadian-rhythm-dysfunction disorder. However, the molecular cause of the circadian defect in SMS has not been described. The circadian oscillator temporally orchestrates metabolism, physiology, and behavior largely through transcriptional modulation. Data support RAI1 as a transcriptional regulator, but the genes it might regulate are largely unknown. Investigation into the role that RAI1 plays in the regulation of gene transcription and circadian maintenance revealed that RAI1 regulates the transcription of circadian locomotor output cycles kaput (CLOCK), a key component of the mammalian circadian oscillator that transcriptionally regulates many critical circadian genes. Data further show that haploinsufficiency of RAI1 and Rai1 in SMS fibroblasts and the mouse hypothalamus, respectively, results in the transcriptional dysregulation of the circadian clock and causes altered expression and regulation of multiple circadian genes, including PER2, PER3, CRY1, BMAL1, and others. These data suggest that heterozygous mutation of RAI1 and Rai1 leads to a disrupted circadian rhythm and thus results in an abnormal sleep-wake cycle, which can contribute to an abnormal feeding pattern and dependent cognitive performance. Finally, we conclude that RAI1 is a positive transcriptional regulator of CLOCK, pinpointing a novel and important role for this gene in the circadian oscillator.


Assuntos
Ritmo Circadiano , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proteínas CLOCK/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oscilometria/métodos , Fenótipo , RNA Interferente Pequeno/metabolismo
13.
J Clin Endocrinol Metab ; 97(2): E312-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162479

RESUMO

CONTEXT: Smith-Magenis syndrome (SMS) is associated with sleep disturbances and disrupted melatonin production. OBJECTIVES: The study aimed to ascertain whether the sleep and melatonin production anomalies in SMS patients may be due to an alteration of the molecular mechanism of the circadian clock. SUBJECTS AND METHODS: Five SMS patients (3-17 yr old) and five healthy age-matched control subjects were involved in the study. Saliva and buccal scrub samples were collected every 4 h during a 24-h period. Daily profiles of melatonin were determined in saliva using a direct double-antibody radioimmunoassay. Daily profiles of clock gene mRNA levels (Per1, Per2, and Rev-erbα) were determined in buccal scrub samples by RT-PCR. RESULTS: In controls, melatonin levels were elevated during the nighttime and very low during the daytime. Daily profiles of clock genes, Per1, Per2, and Rev-erbα, mRNA levels in buccal mucosa exhibited significant and mutually synchronized circadian variations (Per1 and Rev-erbα: P < 0.001; Per2: P < 0.05); the mRNA levels were elevated during the daytime and decreased during the nighttime. In SMS patients, melatonin profiles were significantly altered compared with controls, being phase reversed, phase advanced, depressed, or abolished. Only Per1 and Rev-erbα mRNA profiles exhibited significant circadian rhythms (P < 0.05); the Per2 expression exhibited high variability, and the profile was out of phase with the other clock genes. CONCLUSION: Our findings suggest that the anomalies in melatonin profiles of SMS patients might be due to a disturbance of the molecular circadian clockwork.


Assuntos
Relógios Circadianos/fisiologia , Síndrome de Smith-Magenis/fisiopatologia , Adolescente , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Relógios Circadianos/genética , Ritmo Circadiano/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Melatonina/análise , Melatonina/metabolismo , Saliva/química , Saliva/metabolismo , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo
15.
Expert Rev Mol Med ; 13: e14, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21545756

RESUMO

Smith-Magenis syndrome (SMS) is a complex neurobehavioural disorder characterised by intellectual disability, self-injurious behaviours, sleep disturbance, obesity, and craniofacial and skeletal anomalies. Diagnostic strategies are focused towards identification of a 17p11.2 microdeletion encompassing the gene RAI1 (retinoic acid induced 1) or a mutation of RAI1. Molecular evidence shows that most SMS features are due to RAI1 haploinsufficiency, whereas variability and severity are modified by other genes in the 17p11.2 region for 17p11.2 deletion cases. The functional role of RAI1 is not completely understood, but it is probably a transcription factor acting in several different biological pathways that are dysregulated in SMS. Functional studies based on the hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes have shown that RAI1 gene dosage is crucial for normal regulation of circadian rhythm, lipid metabolism and neurotransmitter function. Here, we review the clinical and molecular features of SMS and explore more recent studies supporting possible therapeutic strategies for behavioural management.


Assuntos
Haploinsuficiência/fisiologia , Redes e Vias Metabólicas/fisiologia , Síndrome de Smith-Magenis/metabolismo , Fatores de Transcrição/metabolismo , Haploinsuficiência/genética , Humanos , Redes e Vias Metabólicas/genética , Síndrome de Smith-Magenis/genética , Transativadores , Fatores de Transcrição/genética
16.
Hum Mol Genet ; 19(20): 4026-42, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663924

RESUMO

Smith-Magenis syndrome (SMS) is a genetic disorder caused by haploinsufficiency of the retinoic acid induced 1 (RAI1) gene. In addition to intellectual disabilities, behavioral abnormalities and sleep disturbances, a majority of children with SMS also have significant early-onset obesity. To study the role of RAI1 in obesity, we investigated the growth and obesity phenotype in a mouse model haploinsufficient for Rai1. Data show that Rai1(+/-) mice are hyperphagic, have an impaired satiety response and have altered abdominal and subcutaneous fat distribution, with Rai1(+/-) female mice having a higher proportion of abdominal fat when compared with wild-type female mice. Expression analyses revealed that Bdnf (brain-derived neurotrophic factor), a gene previously associated with hyperphagia and obesity, is downregulated in the Rai1(+/-) mouse hypothalamus, and reporter studies show that RAI1 directly regulates the expression of BDNF. Even though the Rai1(+/-) mice are significantly obese, serum analyses do not reveal any evidence of metabolic syndrome. Supporting these findings, a caregiver survey revealed that even though a high incidence of abdominal obesity is observed in females with SMS, they did not exhibit a higher incidence of indicators of metabolic syndrome above the general population. We conclude that Rai1 haploinsufficiency represents a single-gene model of obesity with hyperphagia, abnormal fat distribution and altered hypothalamic gene expression associated with satiety, food intake, behavior and obesity. Linking RAI1 and BDNF provides a more thorough understanding of the role of Rai1 in growth and obesity and insight into the complex pathogenicity of obesity, behavior and sex-specific differences in adiposity.


Assuntos
Distribuição da Gordura Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Haploinsuficiência , Hiperfagia/genética , Obesidade/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Análise em Microsséries , Reação em Cadeia da Polimerase , Resposta de Saciedade , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...