Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.743
Filtrar
1.
Exp Lung Res ; 50(1): 106-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642025

RESUMO

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Assuntos
Autofagia , Proteínas de Ligação ao GTP , Lesão Pulmonar , Pneumonia , Síndrome do Desconforto Respiratório , Animais , Camundongos , Autofagia/efeitos dos fármacos , Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Pneumonia/metabolismo , Enfisema Pulmonar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo
2.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649840

RESUMO

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Células Endoteliais , Lipopolissacarídeos , Receptores de IgG , Síndrome do Desconforto Respiratório , Proteínas Elk-1 do Domínio ets , Animais , Masculino , Ratos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Células Endoteliais/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Pulmão/patologia , Pulmão/metabolismo , Ratos Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/genética , Células Th17/metabolismo , Células Th17/imunologia , Transcrição Gênica
3.
Int J Biol Macromol ; 267(Pt 1): 131153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574930

RESUMO

The COVID-19 pandemic has drawn attention to acute lung injury and respiratory distress syndrome as major causes of death, underscoring the urgent need for effective treatments. Protease enzymes possess a wide range of beneficial effects, including antioxidant, anti-inflammatory, antifibrotic, and fibrinolytic effects. This study aimed to evaluate the potential therapeutic effects of bacterial protease and chymotrypsin in rats in mitigating acute lung injury induced by lipopolysaccharide. Molecular docking was employed to investigate the inhibitory effect of bacterial protease and chymotrypsin on TLR-4, the receptor for lipopolysaccharide. Bacterial protease restored TLR-4, Nrf2, p38 MAPK, NF-kB, and IKK-ß levels to normal levels, while chymotrypsin normalized TLR-4, IKK-ß, IL-6, and IL-17 levels. The expression of TGF-ß, caspase-3, and VEGF in the bacterial protease- and chymotrypsin-treated groups was markedly reduced. Our results suggest that both therapies ameliorate LPS-induced acute lung injury and modulate the TLR4/Nrf2/NF-k signaling pathway. Each protease exhibited distinct mechanisms, with bacterial protease showing a better response to oxidative stress, edema, and fibrosis, whereas chymotrypsin provided a better response in the acute phase and innate immunity. These findings highlight the potential of each protease as a promising therapeutic option for acute lung injury and respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Síndrome do Desconforto Respiratório , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , NF-kappa B/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Quimotripsina/metabolismo , Simulação de Acoplamento Molecular , COVID-19 , Tratamento Farmacológico da COVID-19 , Peptídeo Hidrolases/metabolismo , SARS-CoV-2
4.
J Extracell Vesicles ; 13(4): e12437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594787

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1ß both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , MicroRNAs , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Lipopolissacarídeos , Vesículas Extracelulares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , MicroRNAs/metabolismo
5.
Front Immunol ; 15: 1330373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596679

RESUMO

Introduction: Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods: To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results: I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion: These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.


Assuntos
Indóis , Monócitos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
6.
Biomed Pharmacother ; 174: 116447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518606

RESUMO

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.


Assuntos
Canais Epiteliais de Sódio , Eritropoetina , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório , Sepse , ATPase Trocadora de Sódio-Potássio , Ubiquitinação , Animais , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Eritropoetina/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Ubiquitinação/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Masculino , Ratos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Lipopolissacarídeos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
7.
J Extracell Vesicles ; 13(3): e12423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491216

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Monócitos , Sepse , Molécula 1 de Adesão de Célula Vascular , Humanos , Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Monócitos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Sepse/complicações , Sepse/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469626

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Assuntos
Dipeptidil Peptidase 4 , Lipopolissacarídeos , Macrófagos Alveolares , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Líquido da Lavagem Broncoalveolar , Permeabilidade Capilar , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L596-L603, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469648

RESUMO

Acute respiratory distress syndrome (ARDS) is a fatal pulmonary disorder characterized by severe hypoxia and inflammation. ARDS is commonly triggered by systemic and pulmonary infections, with bacteria and viruses. Notable pathogens include Pseudomonas aeruginosa, Streptococcus aureus, Enterobacter species, coronaviruses, influenza viruses, and herpesviruses. COVID-19 ARDS represents the latest etiological phenotype of the disease. The pathogenesis of ARDS caused by bacteria and viruses exhibits variations in host immune responses and lung mesenchymal injury. We postulate that the systemic and pulmonary metabolomics profiles of ARDS induced by COVID-19 pathogens may exhibit distinctions compared with those induced by other infectious agents. This review aims to compare metabolic signatures in blood and lung specimens specifically within the context of ARDS. Both prevalent and phenotype-specific metabolomic signatures, including but not limited to glycolysis, ketone body production, lipid oxidation, and dysregulation of the kynurenine pathways, were thoroughly examined in this review. The distinctions in metabolic signatures between COVID-19 and non-COVID ARDS have the potential to reveal new biomarkers, elucidate pathogenic mechanisms, identify druggable targets, and facilitate differential diagnosis in the future.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/complicações , COVID-19/virologia , COVID-19/patologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Metaboloma , Biomarcadores/metabolismo , Biomarcadores/sangue , Metabolômica/métodos
10.
Free Radic Biol Med ; 218: 132-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554812

RESUMO

Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.


Assuntos
Dinaminas , Hidrogênio , Lipopolissacarídeos , Dinâmica Mitocondrial , Síndrome do Desconforto Respiratório , Tiorredoxinas , Animais , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Camundongos , Humanos , Hidrogênio/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Animais de Doenças , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos
11.
Cells ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38391944

RESUMO

Mammalian cell membranes composed of a mixture of glycerophospholipids, the relative composition of individual phospholipids and the dynamic flux vary between cells. In addition to their structural role, membrane phospholipids are involved in cellular signalling and immunomodulatory functions. In this study, we investigate the molecular membrane composition and dynamic flux of phosphatidylcholines in CD15+ leucocytes and CD3+ lymphocytes extracted from patients with acute respiratory distress syndrome (ARDS). We identified compositional variations between these cell types, where CD15+ cells had relatively higher quantities of alkyl-acyl PC species and CD3+ cells contained more arachidonoyl-PC species. There was a significant loss of arachidonoyl-PC in CD3+ cells in ARDS patients. Moreover, there were significant changes in PC composition and the methyl-D9 enrichment of individual molecular species in CD15+ cells from ARDS patients. This is the first study to perform an in vivo assessment of membrane composition and dynamic changes in immunological cells from ARDS patients.


Assuntos
Fosfatidilcolinas , Síndrome do Desconforto Respiratório , Adulto , Humanos , Leucócitos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Linfócitos T/metabolismo
12.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338744

RESUMO

Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , Armadilhas Extracelulares/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Pulmão , Neutrófilos/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , DNA/metabolismo
13.
Int J Biochem Cell Biol ; 169: 106530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246263

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS. Sulfasalazine (SASP) has antibacterial and anti-inflammatory effects and is used for treating inflammatory bowel and rheumatic diseases. However, the effect of SASP on LPS-induced ALI in mice has not yet been reported. Therefore, we aimed to investigate the effect of SASP on LPS-induced ALI in mice. Mice were intraperitoneally injected with SASP 2 h before or 4 h after LPS modeling. Pulmonary pathological damage was measured based on inflammatory factor expression (malondialdehyde and superoxide dismutase levels) in the lung tissue homogenate and alveolar lavage fluid. The production of inflammatory cytokines and occurrence of oxidative stress in the lungs induced by LPS were significantly mitigated after the prophylactic and long-term therapeutic administration of SASP, which ameliorated ALI caused by LPS. SASP reduced both the production of inflammatory cytokines and occurrence of oxidative stress in RAW264.7 cells, which respond to LPS. Moreover, its mechanism contributed to the suppression of NF-κB and nuclear translocation. In summary, SASP treatment ameliorates LPS-induced ALI by mediating anti-inflammatory and antioxidant effects, which may be attributed to the inhibition of NF-κB activation and promotion of antioxidant defenses. Thus, SASP may be a promising pharmacologic agent for ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Sulfassalazina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
14.
Int Immunopharmacol ; 128: 111535, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246001

RESUMO

Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.


Assuntos
Lesão Pulmonar Aguda , Indóis , Piridinas , Síndrome do Desconforto Respiratório , Sulfonamidas , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Enzima de Conversão de Angiotensina 2/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório/metabolismo
15.
ACS Nano ; 18(2): 1658-1677, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166370

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is a clinically severe respiratory disease that causes severe medical and economic burden. To improve therapeutic efficacy, effectively targeting delivery to the inflamed lungs and inflamed cells remains an ongoing challenge. Herein, we designed engineered biomimetic nanovesicles (DHA@ANeu-DDAB) by fusion of lung-targeting functional lipid, neutrophil membrane containing activated ß2 integrins, and the therapeutic lipid, docosahexaenoic acid (DHA). By the advantage of lung targeting lipid and ß2 integrin targeting adhesion, DHA@ANeu-DDAB can first target lung tissue and further target inflammatory vascular endothelial cells, to achieve "tissue first, cell second" hierarchical delivery. In addition, the ß2 integrins in DHA@ANeu-DDAB could bind to the intercellular cell adhesion molecule-1/2 (ICAM-1/2) ligand on the endothelium in the inflamed blood vessels, thus inhibiting neutrophils' infiltration in the blood circulation. DHA administration to inflamed lungs could effectively regulate macrophage phenotype and promote its anti-inflammatory activity via enhanced biosynthesis of specialized pro-resolving mediators. In the lipopolysaccharide-induced ARDS mouse model, DHA@ANeu-DDAB afforded a comprehensive and efficient inhibition of lung inflammation and promoted acute lung damage repair. Through mimicking physiological processes, these engineered biomimetic vesicles as a delivery system possess good potential in targeting therapy for ARDS.


Assuntos
Neutrófilos , Compostos de Amônio Quaternário , Síndrome do Desconforto Respiratório , Animais , Camundongos , Humanos , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Biomimética , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Pulmão/metabolismo , Integrinas , Lipídeos
16.
PLoS Pathog ; 20(1): e1011929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236930

RESUMO

Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.


Assuntos
Antimaláricos , Malária , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Células Endoteliais/metabolismo , Microtomografia por Raio-X/efeitos adversos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Malária/parasitologia , Análise de Sequência de RNA , Plasmodium berghei
17.
Respir Res ; 25(1): 63, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291476

RESUMO

BACKGROUND: Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. Acute respiratory distress syndrome (ARDS) is a common sepsis-associated injury that can increase postoperative mortality but the mechanism is still unclear. MAIN TEXT: The role of neutrophils in the pathophysiology of sepsis was deeply challenged after the discovery of NETosis, a process resulting in neutrophil extracellular traps (NETs) release. NETs can support thrombin generation and the concept of immunothrombosis has emerged as a new innate response to infection. Immunothrombosis leads to thrombosis in microvessels and supports immune cells together with specific thrombus-related molecules. ARDS is a common sepsis-associated organ injury. Immunothrombosis participates in thrombosis in pulmonary capillaries. Intervention regarding immunothrombosis in ARDS is a key scientific problem. PAD4 is the key enzyme regulating the NET skeleton protein histone H3 to citrulline histone to form NETs in immune thrombosis. This review summarizes NETosis and immunohaemostasis, ARDS and therapeutic opportunities targeting PAD4 via PAD4 inhibitors and lncRNAs potentially, providing future therapies. CONCLUSIONS: We identified and summarized the fundamental definition of ARDS and the concept of immune thrombosis and its composition. NETs activation has become particularly relevant in the formation of immune thrombosis. The taskforce highlighted the intervention targets of PAD4, including noncoding RNAs, potentially providing future therapeutic targets to confront the high postoperative mortality of ARDS.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Sepse , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , Tromboinflamação , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Neutrófilos/metabolismo , Histonas/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Sepse/metabolismo
18.
Lung ; 202(1): 25-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38060060

RESUMO

Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Osteopontina/genética , Osteopontina/metabolismo , Pulmão/patologia , Fibrose Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Fibrose
20.
J Med Food ; 27(1): 72-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976106

RESUMO

Hippophae rhamnoides exhibit a wide variety of medicinal and pharmacological effects. The present study aims to determine the role of ethanol extract of H. rhamnoides on oleic acid (OA)-induced acute respiratory distress syndrome (ARDS) in rats. Male rats were randomly divided into the following groups: (I) Control, (II) OA, and (III) OA+H. rhamnoides. H. rhamnoides extract (500 mg/kg) was given orally for 2 weeks before OA in Group III. Levels of total antioxidant capacity, total oxidant status (TOS), myeloperoxidase (MPO), mitogen-activated protein kinase (MAPK), acetylcholinesterase (AChE), and angiotensin-converting enzyme (ACE) were quantified by enzyme-linked immunosorbent assay (ELISA). Real time quantitative polymerase chain reaction was utilized to evaluate the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and matrix metalloproteinase 2 (MMP2). Also, Caspase-3 immunostaining and expression were performed to evaluate apoptosis. Compared with the OA group, there was a significantly decrease in the levels of MPO, TOS, MAPK, and ACE and in the expression of NF-κB, TNF-α, IL-6, MMP2, and Caspase-3 in the H. rhamnoides administration group. Moreover, the activity of AChE and level of TAS were substantially higher in the H. rhamnoides administration compared with the OA group. The findings in the study suggest that the protective effect of H. rhamnoides pretreatment may act through inhibition of the ACE activity, releasing AChE, regulation of inflammatory cytokine levels, and suppression of apoptotic process in ARDS.


Assuntos
Hippophae , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Metaloproteinase 2 da Matriz , Acetilcolinesterase , Ácido Oleico , Hippophae/metabolismo , Caspase 3 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Interleucina-6/genética , Angiotensinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...