RESUMO
A previous study demonstrated that glutathione (GSH) produces specific antidepressant-like effect in the forced swimming test (FST), a predictive test of antidepressant activity. The present study investigated the involvement of multiple cellular targets implicated in the antidepressant-like effect of GSH in the FST. The antidepressant-like effect of GSH (300 nmol/site, icv) lasted up to 3 h when mice were submitted to FST. The central administration of oxidized GSH (GSSG, 3-300 nmol/site) did not alter the behavior of mice submitted to the FST. Furthermore, the combined treatment of sub-effective doses of GSH (100 nmol/site, icv) with a sub-effective dose of classical antidepressants (fluoxetine 10 mg/kg, and imipramine 5 mg/kg, ip) presented synergistic effect by decreasing the immobility time in the FST. The antidepressant-like effect of GSH was abolished by prazosin (1 mg/kg, ip, α1-adrenoceptor antagonist), baclofen (1 mg/kg, ip, GABAB receptor agonist), bicuculline (1 mg/kg, ip, GABAA receptor antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 µg/site, icv, NO donor), but not by yohimbine (1 mg/kg, ip, α2-adrenoceptor antagonist). The NMDA receptor antagonists, MK-801(0.001 mg/kg, ip) or GMP (0.5 mg/kg, ip), potentiated the effect of a sub-effective dose of GSH in the FST. These results suggest that the antidepressant-like effect induced by GSH is connected to the activation of α1 adrenergic and GABAA receptors, as well as the inhibition of GABAB and NMDA receptors and NO biosyntesis. We speculate that redox-mediated signaling on the extracelular portion of cell membrane receptors would be a common mechanism of action of GSH.
Assuntos
Antidepressivos/farmacologia , Glutationa/farmacologia , Terapia de Alvo Molecular , Antagonistas Adrenérgicos/farmacologia , Animais , Arginina/farmacologia , Sinergismo Farmacológico , Feminino , Glutationa/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imobilização , Masculino , Camundongos , Receptores Adrenérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , NataçãoRESUMO
This study aimed to examine the effects of nitric oxide (NO) and different phosphodiesterase (PDE) families on meiosis resumption, nucleotides levels and embryo production. Experiment I, COCs were matured in vitro with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) associated or not with the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), meiotic resumption and nucleotides levels were assessed. SNAP delayed germinal vesicle breakdown (GVBD) (53.4 ± 1.2 versus 78.4 ± 2.4% for controls, P 0.05). Cyclic GMP levels were higher in SNAP (3.94 ± 0.18, P 0.05). Embryo development did not differ from the control for SNAP and cilostamide groups (38.7 ± 5.8, 37.9 ± 6.2 and 40.5 ± 5.8%, P > 0.05), but SNAP + cilostamide decreased embryo production (25.7 ± 6.9%, P < 0.05). In conclusion, SNAP was confirmed to delay meiosis resumption by the NO/sGC/cGMP pathway, by increasing cGMP, but not cAMP. Inhibiting different PDEs to further increase nucleotides in association with SNAP did not show any additive effects on meiosis resumption, indicating that other pathways are involved. Moreover, SNAP + cilostamide affected the meiosis progression and decreased embryo development.
Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Blastocisto/fisiologia , Óxido Nítrico/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Bovinos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dipiridamol/metabolismo , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos/métodos , Masculino , Meiose/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Oócitos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Citrato de Sildenafila/farmacologiaRESUMO
Nitric oxide (NO) is a chemical messenger involved in the control of oocyte maturation. It stimulates guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases that may interfere with cAMP levels, a nucleotide also involved in meiosis resumption. The aim of this study was to determine the role played by NO on the cGMP/cAMP pathway during meiosis resumption in bovine oocytes. The effects of increasing NO generated by S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-3) mol/L) and of other drugs that may affect the NO/cGMP pathway (proptoporfirin IX and 8-Br-cGMP) on meiosis resumption were investigated in bovine cumulus-oocyte complexes (COCs) matured for 9 hours in a semidefined medium (TCM199 + 3 mg/mL BSA). The COCs matured with 10(-7) mol/L SNAP associated or not with 100 µmol/L oxadiazole-one quinoxaline, a guanylate cyclase inhibitor, also had their cGMP and cAMP levels measured during the first hours of maturation (1, 3, and 6 hours). Quantitative polymerase chain reaction was performed by real-time polymerase chain reaction to determine the effects of NO on expression of genes encoding for enzymes of the NO/guanylate cyclase/cGMP and cAMP pathways during the first 9 hours of oocyte maturation. Increasing NO levels using 10(-7) mol/L SNAP resulted in lower rate of germinal vesicle breakdown (36% germinal vesicle breakdown; P < 0.05) at 9 hours IVM, whereas control group and the treatments with 10(-9) and 10(-8) mol/L SNAP showed about 70% germinal vesicle breakdown (P > 0.05). A temporary increase in cGMP levels was also observed with the same treatment (4.51 pmol/COC) at 1 hour IVM, which was superior to the control group (2.97 pmol/COC; P < 0.05) and was reversed by inhibiting guanylate cyclase activity with 100 µmol/L oxadiazole-one quinoxaline. Neither cAMP levels nor gene expression were affected by NO. These results suggest that NO acts via guanylate cyclase/cGMP and that even a temporary increase in cGMP levels leads to a delay in meiosis resumption, even when cAMP levels have declined. Nitric oxide does not act on oocyte maturation by affecting cAMP levels or the expression of genes related to the NO/guanylate cyclase/cGMP and cAMP pathways. Also, to our knowledge this is the first report to detect PKG1, PKG2, phosphodiesterase-5A, ADCY3, ADCY6, and ADCY9 transcripts in bovine oocytes.
Assuntos
Bovinos/fisiologia , Guanilato Ciclase/fisiologia , Meiose/fisiologia , Óxido Nítrico/fisiologia , Oócitos/fisiologia , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/genética , AMP Cíclico/fisiologia , GMP Cíclico/genética , GMP Cíclico/fisiologia , Feminino , Oxidiazóis/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , RNA/química , RNA/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterinária , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Nitric oxide (NO) plays an important role as a leishmanicidal agent in murine macrophages. NO resistant Escherichia coli and Mycobacterium tuberculosis have been associated with poor outcomes of their resulting diseases. NO resistant Leishmania braziliensis has also been identified and exacerbates the clinical course of human leishmaniasis. We report, for the first time, natural resistance of Leishmania chagasi promastigotes to NO. These parasites were isolated from humans and dogs with visceral leishmaniasis. We also demonstrate that this resistance profile was associated with a greater survival capacity and a greater parasite burden in murine macrophages, independent of activation and after activation by IFN-γ and LPS.
Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Óxido Nítrico/farmacologia , Animais , Brasil , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Resistência a Medicamentos , Humanos , Concentração Inibidora 50 , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/veterinária , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Camundongos , Doadores de Óxido Nítrico/farmacologia , Carga Parasitária , S-Nitroso-N-Acetilpenicilamina/farmacologiaRESUMO
NO (nitric oxide) donating drugs have been investigated for their important role in the sensitization of neoplastic cells to chemotherapy drugs. The goal of this work was to investigate the involvement of NO in the resistance of K562 cells to DNR (daunorubicin). Only simultaneous addition of DNR and SNAP (S-nitroso-N-acetyl-dl-penicillamine) caused significant cell death by apoptosis. Combination of the compounds decreased Bcl-2 and survivin, and increased Bax and active-caspase 3 expression. Fluorescence microscope and cytometric analysis showed that DNR and SNAP together caused DNR intracellular accumulation in K562 cells. RT-PCR (reverse transcription-PCR) analysis showed that DNR and SNAP, alone or in association, produced significant decreases in lrp expression. abcc1 gene expression was unaffected by the presence of SNAP, but when treated with DNR there was a small reduction that was intensified by DNR and SNAP in combination. The transport mechanism involved in the resistance to DNR in K562 cells involves ABCC1 and LRP (lung resistance protein) resistance proteins. DNR and SNAP inhibition of the expression of these proteins occurs by distinct mechanisms, and this disrupts the K562 resistance to DNR.
Assuntos
Antibióticos Antineoplásicos/metabolismo , Daunorrubicina/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Survivina , Proteína X Associada a bcl-2/metabolismoRESUMO
Stem cell therapy has been considered a promise for damaged myocardial tissue. We have previously shown that S-nitroso-N-acetyl-D,L-penicillamine (SNAP) increases the expression of several muscular markers and VEGF in mesenchymal stem cells, indicating that transplantation of SNAP-treated cells could provide better functional outcomes. Here, we transplanted SNAP-treated adipose tissue-derived stem cells (ADSCs) in rat infarcted myocardium. After 30days, we observed a significant improvement of the ejection fraction in rats that received SNAP-treated ADSCs, compared with those that received untreated cells (p=0.008). Immunohistochemical reactions showed an increased expression of troponin T-C and von Willebrand factor, and organized vascular units in the infarcted area of tissue transplanted with treated ADSCs. SNAP exposure induced intracellular S-nitrosation, a decreased GSH/GSSG ratio, but did not increase cGMP levels. Collectively, these results indicate that SNAP alters the redox environment of ADSCs, possibly associated with a pre-differentiation state, which may improve cardiac function after transplantation.
Assuntos
Tecido Adiposo/citologia , Coração/fisiopatologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Coração/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Infarto do Miocárdio/fisiopatologia , Nitrosação/efeitos dos fármacos , Ratos , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Volume Sistólico/efeitos dos fármacos , Troponina/metabolismo , Fator de von Willebrand/metabolismoRESUMO
Mitochondria generated nitric oxide (NO) regulates several cell functions including energy metabolism, cell cycling, and cell death. Here we report that the NO synthase inhibitors (L-NAME, L-NNA and L-NMMA) administered either in vitro or in vivo induce Ca2+-dependent mitochondrial permeability transition (MPT) in rat liver mitochondria via a mechanism independent on changes in the energy state of the organelle. MPT was determined by the occurrence of cyclosporin A sensitive mitochondrial membrane potential disruption followed by mitochondrial swelling and Ca2+ release. In in vitro experiments, the effect of NOS inhibitors was dose-dependent (1 to 50 microM). In addition to cyclosporin A, L-NAME-induced MPT was sensitive to Mg2+ plus ATP, EGTA, and to a lower degree, to catalase and dithiothreitol. In contrast to L-NAME, its isomer D-NAME did not induce MPT. L-NAME-induced MPT was associated with a significant decrease in both the rate of NO generation and the content of mitochondrial S-nitrosothiol. Acute and chronic in vivo treatment with L-NAME also promoted MPT and decreased the content of mitochondrial S-nitrosothiol. SNAP (a NO donor) prevented L-NAME mediated MPT and reversed the decrease in the rate of NO generation and in the content of S-nitrosothiol. We propose that S-nitrosylation of critical membrane protein thiols by NO protects against MPT.
Assuntos
Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico/metabolismo , S-Nitrosotióis/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologiaRESUMO
In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.
Assuntos
Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Nitritos/metabolismo , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Óxidos N-Cíclicos/farmacologia , Regulação para Baixo , Sequestradores de Radicais Livres/farmacologia , Humanos , Imidazóis/farmacologia , Melanoma , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/biossíntese , Nitroprussiato/farmacologia , Compostos Nitrosos/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Nitrito de Sódio/farmacologiaRESUMO
Antidepressant-like activity of folic acid in forced swimming test and in the tail suspension test was demonstrated previously by our group. In this study we investigated the involvement of N-methyl-d-aspartate (NMDA) receptors and l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate pathway in its antidepressant-like effect in the forced swimming test in mice. The antidepressant-like effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with NMDA (0.1 pmol/site, i.c.v.), l-arginine (750 mg/kg, i.p., substrate for nitric oxide synthase), S-nitroso-N-acetyl-penicillamine (SNAP, 25 microg/site, i.c.v, a NO donor) or sildenafil (5 mg/kg, i.p., phosphodiesterase 5 inhibitor). The administration of 7-nitroindazole (25 and 50 mg/kg, i.p., a specific neuronal nitric oxide synthase (nNOS) inhibitor) or methylene blue (20 mg/kg, i.p., direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase) in combination with a sub-effective dose of folic acid (1 nmol/site, i.c.v.) reduced the immobility time in the FST as compared with either drug alone. Together the results suggest that the antidepressant-like effect of folic acid in the forced swimming test is dependent on an inhibition of either NMDA receptors or NO and cGMP synthesis.
Assuntos
Antidepressivos , Arginina/fisiologia , GMP Cíclico/fisiologia , Ácido Fólico/farmacologia , Óxido Nítrico/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Indazóis/farmacologia , Injeções Intraventriculares , Masculino , Azul de Metileno/farmacologia , Camundongos , N-Metilaspartato/farmacologia , Doadores de Óxido Nítrico/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Natação/psicologiaRESUMO
The effect of s-nitroso-n-acetyl-l,l-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10(-3) m SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10(-5) m SNAP showed intermediate proportions (55%). For 10(-7) m SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10(-5) m SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10(-7) m SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.
Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Meiose/efeitos dos fármacos , Óxido Nítrico/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Animais , Bovinos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Masculino , Doadores de Óxido Nítrico/farmacologia , Oócitos/fisiologia , S-Nitroso-N-Acetilpenicilamina/farmacologiaRESUMO
S-Nitrosylation reactions are considered to be a major mechanism by which NO-related bioactivities are regulated in vivo. In the present study, we show the effects of the low molecular weight S-nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), on cell cycle progression of rabbit aortic endothelial cells (RAEC). SNAP at low concentrations (0.1mM) stimulated the p21Ras-ERK1/2 MAP kinase signaling pathway. Activation of this signaling pathway was strongly inhibited in cells stably transfected with S-nitrosylation insensitive p21Ras (p21(Ras (C118S))). Furthermore, the SNAP-induced effects on cell cycle progression were eliminated in RAEC expressing N17Ras, a negative dominant mutant of p21Ras. Upon stimulation with SNAP, ERK1/2 MAP kinases become phosphorylated and translocate to the nucleus promoting the phosphorylation of the transcription factor Elk1. Synthesis of Cyclin D1 and stimulation of the cyclin-dependent kinases cdk4 and cdk6 resulted in the phosphorylation of the nuclear protein Rb and its dissociation from the E2F family of transcription factors. Cells then pass the restriction point in the late G1 phase. Cyclins E and A were expressed as the cell cycle progressed through the S phase upon stimulation with SNAP. Further transition in the cell cycle from the G2 to M phase was evidenced by the G2/M peak found in a histogram of the cell-phase distribution in SNAP-treated RAEC. These observations suggest that low molecular weight S-nitrosothiols may promote cell cycle progression possibly through the transnitrosation of p21Ras, and activation of the Ras-ERK1/2 MAP kinases signaling pathway.
Assuntos
Aorta/citologia , Ciclo Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , S-Nitrosotióis/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peso Molecular , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Coelhos , Proteína do Retinoblastoma/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismoRESUMO
BACKGROUND: Morphine can inhibit inflammatory edema in experimental animals. The mechanisms and sites by which opioids exert this effect are still under debate. Since the spinal level is a site for modulation of the neurogenic component of inflammation, we investigated the effect of intrathecal (i.t.) administration of morphine, and the involvement of spinal nitric oxide (NO)/cyclic-guanosine monophosphate-GMP pathway in carrageenan (CG)-induced paw edema. METHODS: Male Wistar rats received i.t. injections of drugs (20 microL) 30 min before paw stimulation with CG (150 microg). Edema was measured as paw volume increase (mL), and neutrophil migration was evaluated indirectly by myeloperoxidase (MPO) assay. RESULTS: Morphine (37, 75, and 150 nmol) inhibited inflammatory edema, but had no effect on MPO activity. Coinjection with naloxone (64 nmol) reversed the effect of morphine. The corticosteroid synthesis inhibitor, aminoglutethimide (50 mg/kg, v.o.), administered 90 min before morphine injection did not modify its antiedematogenic effect. Low doses of the NO synthase inhibitor, N(omega)-nitro-L-arginine (L-NNA; 10 and 30 pmol) increased, while higher doses (3 and 30 nmol) inhibited edema. The guanylate cyclase inhibitor 1H-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 21 and 42 nmol) increased, while the phosphodiesterase type 5 inhibitor sildenafil (0.15 and 1.5 nmol) inhibited paw edema. Coadministration of a subeffective dose of L-NNA (3 pmol) or ODQ (10 nmol) with morphine prevented its antiedematogenic effect, but sildenafil (0.15 nmol) rendered a subeffective dose of morphine effective (18 nmol). ODQ also prevented the antiedematogenic effect of the NO donor S-nitroso-N-acetyl-penicilamine. CONCLUSION: These results support the idea that morphine can act on opioid receptors at the spinal level to produce antiedematogenic, and that the NO/cGMP pathway seems to be an important mediator in this effect.
Assuntos
Analgésicos Opioides/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , GMP Cíclico/metabolismo , Edema/prevenção & controle , Inflamação/prevenção & controle , Morfina/administração & dosagem , Óxido Nítrico/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Carragenina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/etiologia , Edema/metabolismo , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/metabolismo , Injeções Espinhais , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nitroarginina/farmacologia , Oxidiazóis/farmacologia , Peroxidase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila , Medula Espinal/enzimologia , Medula Espinal/metabolismo , Sulfonas/farmacologia , Fatores de TempoRESUMO
The role of nitric oxide (NO) in cardiac contractility is complex and controversial. Several NO donors have been reported to cause positive or negative inotropism. NO can bind to guanylate cyclase, increasing cGMP production and activating PKG. NO may also directly S-nitrosylate cysteine residues of specific proteins. We used the isolated rat heart preparation to test the hypothesis that the differential inotropic effects depend on the degree of NO production and the signaling recruited. SNAP (S-nitroso-N-acetylpenicillamine), a NO donor, increased contractility at 0.1, 1 and 10 microM. This effect was independent of phospholamban phosphorylation, was not affected by PKA inhibition with H-89 (N-[2((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide), but it was abolished by the radical scavenger Tempol (4-hydroxy-[2,2,4,4]-tetramethyl-piperidine-1-oxyl). However, at 100 microM SNAP reduced contractility, effect reversed to positive inotropism by guanylyl cyclase blockade with ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), and abolished by PKG inhibition with KT5823, but not affected by Tempol. SNAP increased tissue cGMP at 100 microM, but not at lower concentrations. Consistently, a cGMP analog also reduced cardiac contractility. Finally, SNAP at 1 microM increased the level of S-nitrosylation of various cardiac proteins, including the ryanodine receptor. This study demonstrates the biphasic role for NO in cardiac contractility in a given preparation; furthermore, the differential effect is clearly ascribed to the signaling pathways involved. We conclude that although NO is highly diffusible, its output determines the fate of the messenger: low NO concentrations activate redox processes (S-nitrosylation), increasing contractility; while the cGMP-PKG pathway is activated at high NO concentrations, reducing contractility.
Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Contração Miocárdica/fisiologia , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Carbazóis/farmacologia , GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Óxidos N-Cíclicos/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico/biossíntese , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/antagonistas & inibidores , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Marcadores de SpinRESUMO
Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.
Assuntos
Ácido Abscísico/fisiologia , Cálcio/fisiologia , Luz , Óxido Nítrico/fisiologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/fisiologia , Ácido Abscísico/farmacologia , Benzoatos/farmacologia , Cálcio/farmacologia , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Fluoresceína/química , Imidazóis/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/química , Óxido Nítrico Sintase/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , S-Nitroso-N-Acetilpenicilamina/farmacologia , S-Nitrosoglutationa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vicia faba/fisiologiaRESUMO
BACKGROUND: Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. RESULTS: Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin - induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. CONCLUSION: Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Assuntos
Proteínas Angiogênicas/metabolismo , Antineoplásicos/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Melanoma Experimental/enzimologia , Metaloendopeptidases/metabolismo , Neovascularização Patológica/enzimologia , Proteínas Angiogênicas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bradicinina/metabolismo , Extratos Celulares , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Técnicas de Cocultura , Colágeno , Meios de Cultivo Condicionados/metabolismo , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Feminino , Hidrólise , Laminina , Leucina/análogos & derivados , Leucina/farmacologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patologia , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Neurotensina/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Oligopeptídeos/farmacologia , Peptídeos/metabolismo , Fenantrolinas/farmacologia , Inibidores de Proteases/farmacologia , Proteoglicanas , S-Nitroso-N-Acetilpenicilamina/farmacologia , Especificidade por SubstratoRESUMO
The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (I.C.V.) injection of angiotensin II (Ang II) stimulates the release of AVP, OT and atrial natriuretic peptide (ANP), with the resultant antidiuretic and natriuretic effects. This study investigated the interaction between nitrergic and angiotensinergic pathways on the release of AVP, OT and ANP and on urinary volume and sodium excretion in water-loaded rats. Unanaesthetized, freely moving, male Wistar rats received two water loads followed by an injection into the lateral ventricle of an inhibitor of NOS (L-NAME), a NO donor [3-morpholinylsydnoneimine chloride (SIN-1) or S-nitroso-N-acetyl penicillamine (SNAP)] or vehicle (isotonic saline) and, 20 min after, they received a second I.C.V. injection of Ang II or vehicle. Injections of L-NAME or Ang II produced an increase in plasma levels of AVP, OT and ANP, a reduction in urinary volume and an increase in sodium excretion. Pretreatment with L-NAME enhanced the Ang II-induced increase in AVP, OT and ANP release, as well as the antidiuresis and natriuresis. Injection of SIN-1 or SNAP did not modify hormonal plasma levels and urinary parameters. In contrast SNAP blocked the AVP, OT and ANP release, as well as antidiuretic and natriuretic responses induced by ANG-II. Thus, the central nitrergic system can act to inhibit AVP, OT and ANP secretion and the antidiuretic and natriuretic effects in response to Ang II.
Assuntos
Angiotensina II/farmacologia , Natriurese/efeitos dos fármacos , Natriurese/fisiologia , Óxido Nítrico/metabolismo , Hormônios Peptídicos/sangue , Vasoconstritores/farmacologia , Animais , Fator Natriurético Atrial/sangue , Estado de Consciência , Inibidores Enzimáticos/farmacologia , Injeções Intraventriculares , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Concentração Osmolar , Ocitocina/sangue , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologia , Sódio/urina , Urina , Vasopressinas/sangueRESUMO
One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21(RasC118S)). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway.
Assuntos
Núcleo Celular/metabolismo , Doadores de Óxido Nítrico/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Tiorredoxinas/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Transdução de SinaisRESUMO
In the present study, we addressed the role of intercellular adhesion molecule type 1 (ICAM-1/CD54) in neutrophil migration to inflammatory site and whether the inhibitory effect of nitric oxide (NO) upon the neutrophil rolling, adhesion and migration involves down-modulation of ICAM-1 expression through a cyclic GMP (cGMP) dependent mechanism. It was observed that neutrophil migration induced by intraperitoneal administration of endotoxin (LPS), carrageenan (Cg) or N-formyl peptide (fMLP) in ICAM-1 deficient (ICAM-1-/-) is similar to that observed in wild type (WT) mice. The treatment of mice with NO synthase (NOS) inhibitors, NG-nitro-l-arginine, aminoguanidine or with a soluble guanylate cyclase (sGC) inhibitor, ODQ enhanced LPS- or Cg-induced neutrophil migration, rolling and adhesion on venular endothelium. These parameters induced by LPS were also enhanced by 1400 W, a specific iNOS inhibitor, treatment. On the other hand, the treatment of the mice with S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, reduced these parameters induced by LPS or Cg by a mechanism sensitive to ODQ pretreatment. The NOS inhibitors did not enhance LPS-, Cg- or fMLP-induced migration and adhesion in ICAM-1-/- mice. Moreover, genetic (iNOS-/- mice) or pharmacological inhibition of NOS or of sGC enhanced LPS-induced ICAM-1 expression on mesenteric microcirculation vessels of WT mice. By contrast, SNAP reduced the ICAM-1 expression by a mechanism dependent on cGMP. In conclusion, the results suggest that although during inflammation, ICAM-1 does not contribute to neutrophil migration, it is necessary for the down-modulatory effect of inflammation-released NO on the adhesion and transmigration of neutrophils. Moreover, these NO effects are mediated via cGMP.
Assuntos
Movimento Celular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/fisiologia , Neutrófilos/citologia , Óxido Nítrico/metabolismo , Animais , Carragenina/farmacologia , Adesão Celular/efeitos dos fármacos , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Molécula 1 de Adesão Intercelular/genética , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Circulação Esplâncnica/efeitos dos fármacosRESUMO
The effect of the putative endogenous ligand for alpha(2)-adrenoceptors and imidazoline receptors agmatine was studied in sympathetic neurotransmission in the rat epididymal vas deferens. Tissues were obtained from N(varpi)-nitro-l-arginine methyl ester (l-NAME)-treated or normal animals and were contracted by electrical stimulation or by exogenous adenosine 5'-triphosphate (ATP). In the electrically stimulated epididymal end, agmatine produced an inhibitory effect on twitch contraction that was partially reversed in l-NAME-treated animals, whereas the inhibition produced by clonidine was not affected by l-NAME treatment. The nitric oxide (NO)-donor S-nitroso-N-acetyl-penicillamine (SNAP) also inhibited twitch contraction. Neither agmatine nor SNAP interfered with the responses induced by exogenous ATP in the epididymal end. Removal of the epithelium of the preparation did not modify the agmatine response. We conclude that a nitrergic pathway activated by agmatine plays a role in its inhibitory effect in rat vas deferens, but it remains to be investigated whether it results from a direct action on the enzyme NO-synthase or a receptor-mediated mechanism.
Assuntos
Agmatina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Trifosfato de Adenosina/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Agmatina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Clonidina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Epididimo/fisiologia , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/farmacologia , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ducto Deferente/efeitos dos fármacosRESUMO
Nitric oxide (NO) has been shown to be cytotoxic for normal and transformed cell lines. One of the intracellular targets for NO action is glutathione (GSH). GSH determinates cellular redox potential and modulates several biological events. During oxidative and nitrosative stress, glutathione system imbalance is associated with the upregulation of gamma-glutamylcysteine synthetase (gamma-GCS) expression, which is mediated by nuclear factor kappaB (NF-kappaB). Our previous studies demonstrated a cytotoxic effect of NO and taxol on human lymphoblastic leukemia cells triggered by inhibition of NF-kappaB activity. In this study, we have demonstrated the involvement of GSH in taxol- and NO-induced cytotoxic effects on human CEM leukemia cells. NO- and taxol-induced a depletion of GSH levels in CEM cells, which was potentialized by l-buthionine-S,R-sulfoximine (BSO), an inhibitor of gamma-GCS. BSO induced an increase in nuclear translocation of NF-kappaB. However, when cells were treated with NO or taxol in association with BSO, these compounds inhibited the constitutive activity of NF-kappaB. These results suggest that oxidative and nitrosative damage in lymphoblastic leukemia cells shall be mediated by NO- and taxol-induced GSH depletion as a consequence of preventing GSH synthesis.