Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 189: 410-419, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34437917

RESUMO

We have previously demonstrated the ability of the human vaginal strain Lactobacillus crispatus 2029 (LC2029) for strong adhesion to cervicovaginal epithelial cells, expression of the surface layer protein 2 (Slp2), and antagonistic activity against urogenital pathogens. Slp2 forms regular two-dimensional structure around the LC2029 cells,which is secreted into the medium and inhibits intestinal pathogen-induced activation of caspase-9 and caspase-3 in the human intestinal Caco-2 cells. Here, we elucidated the effects of soluble Slp2 on adhesion of proteobacteria pathogens inducing necrotizing enterocolitis (NEC), such as Escherichia coli ATCC E 2348/69, E. coli ATCC 31705, Salmonella Enteritidis ATCC 13076, Campylobacter jejuni ATCC 29428, and Pseudomonas aeruginosa ATCC 27853 to Caco-2 cells, as well as on growth promotion, differentiation, vascular endothelial growth factor (VEGF) production, and intestinal barrier function of Caco-2 cell monolayers. Slp2 acts as anti-adhesion agent for NEC-inducing proteobacteria, promotes growth of immature Caco-2 cells and their differentiation, and enhances expression and functional activity of sucrase, lactase, and alkaline phosphatase. Slp2 stimulates VEGF production, decreases paracellular permeability, and increases transepithelial electrical resistance, strengthening barrier function of Caco-2 cell monolayers. These data support the important role of Slp2 in the early postnatal development of the human small intestine enterocytes.


Assuntos
Diferenciação Celular , Enterócitos/metabolismo , Lactobacillus crispatus/química , Glicoproteínas de Membrana/farmacologia , Vagina/microbiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Impedância Elétrica , Enterócitos/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactase/genética , Lactase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sacarase/genética , Sacarase/metabolismo
2.
Sci Rep ; 11(1): 2474, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510212

RESUMO

The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.


Assuntos
Proteínas de Bactérias , Haptenos/biossíntese , Oligossacarídeos/biossíntese , Engenharia de Proteínas , Shigella flexneri/metabolismo , Sacarase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Haptenos/genética , Oligossacarídeos/genética , Shigella flexneri/genética , Sacarase/genética , Sacarase/metabolismo
3.
Int J Food Sci Nutr ; 71(5): 572-580, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31976784

RESUMO

Resistant starch (RS) consumption has beneficial effects on health, such as reduced postprandial blood glucose levels. In this study, we evaluated the effect of a 14-day diet containing RS on α-glucosidase activity and the expression of genes related to carbohydrate digestion/absorption in rats. We examined whether the effects of RS persist when the rats were shifted to a control diet. The results suggest that RS consumption reduces α-glucosidase activity and Mgam, Si and Sglt1 mRNA levels in the proximal jejunum. In addition, RS consumption appeared to influence the serum GIP level, up to 2 days after the animals were shifted to a control diet. To our knowledge, this is the first report that RS has a sustained effect on gut hormone expression and the expression of genes related to carbohydrate digestion/absorption in the proximal jejunum.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Digestão , Polipeptídeo Inibidor Gástrico/sangue , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Amido Resistente/farmacologia , alfa-Glucosidases/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Dieta , Comportamento Alimentar , Polipeptídeo Inibidor Gástrico/genética , Intestino Delgado/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Oligo-1,6-Glucosidase/genética , Oligo-1,6-Glucosidase/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Sacarase/genética , Sacarase/metabolismo , alfa-Glucosidases/genética
4.
Sci Rep ; 8(1): 15153, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310109

RESUMO

Enzymatic glycosylation of flavonoids is an efficient mean to protect aglycons against degradation while enhancing their solubility, life time and, by extension, their bioavailability which is critical for most of their applications in health care. To generate a valuable enzymatic platform for flavonoid glucosylation, an α-1,2 branching sucrase belonging to the family 70 of glycoside-hydrolases was selected as template and subsequently engineered. Two libraries of variants targeting pair-wise mutations inferred by molecular docking simulations were generated and screened for quercetin glucosylation using sucrose as a glucosyl donor. Only a limited number of variants (22) were retained on the basis of quercetin conversion and product profile. Their acceptor promiscuity towards five other flavonoids was subsequently assessed, and the automated screening effort revealed variants showing remarkable ability for luteolin, morin and naringenin glucosylation with conversion ranging from 30% to 90%. Notably, naringenin and morin, a priori considered as recalcitrant compounds to glucosylation using this α-transglucosylases, could also be modified. The approach reveals the potential of small platforms of engineered GH70 α-transglucosylases and opens up the diversity of flavonoid glucosides to molecular structures inaccessible yet.


Assuntos
Flavonoides/metabolismo , Glucosídeos/metabolismo , Simulação de Acoplamento Molecular , Sacarase/química , Sítios de Ligação , Flavonoides/química , Glucosídeos/química , Ligação Proteica , Sacarase/genética , Sacarase/metabolismo , Sacarose/química , Sacarose/metabolismo
5.
Insect Biochem Mol Biol ; 101: 131-143, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205149

RESUMO

Plant piercing sucking insects mainly feed on phloem sap containing a high amount of sucrose. To enhance the absorption of sucrose from the midgut, sucrose hydrolase digests sucrose into glucose and fructose. In this study, a sucrose hydrolase homolog (DcSuh) was identified and targeted in Diaphorina citri, the vector of huanglongbing (HLB), by RNA interference (RNAi). In silico analysis revealed the presence of an Aamy domain in the DcSUH protein, which is characteristic of the glycoside hydrolase family 13 (GH13). Phylogenetic analysis showed DcSuh was closely related to the sucrose hydrolase of other Hemiptera members. The highest gene expression levels of DcSuh was found in the 4th and 5th instar nymphs. dsRNA-mediated RNAi of DcSuh was achieved through topical feeding. Our results showed that application of 0.2 µL of 500 ng µL-1 (100 ng) dsRNA-DcSuh was sufficient to repress the expression of the targeted gene and cause nymph mortality and reduce adult lifespan. The reduction in gene expression, mortality, and lifespan was dose-dependent. In agreement with the gene expression results, treatment with dsRNA-DcSuh significantly reduced sucrose hydrolase activity in treated nymphs and emerged adults from treated nymphs. Interestingly, some emerged adults from treated nymphs showed a swollen abdomen phenotype, indicating that these insects were under osmotic stress. Although the percentage of swollen abdomens was low, their incidence was significantly correlated with the concentration of applied dsRNA-DcSuh. Metabolomic analyses using GC-MS showed an accumulation of sucrose and a reduction in fructose, glucose and trehalose in treated nymphs, confirming the inhibition of sucrose hydrolase activity. Additionally, most of the secondary metabolites were reduced in the treated nymphs, indicating a reduction in the biological activities in D. citri and that they are under stress. Our findings indicate that sucrose hydrolase might be a potential target for effective RNAi control of D. citri.


Assuntos
Hemípteros/genética , Proteínas de Insetos/genética , Ninfa/genética , Osmorregulação/genética , Sacarase/genética , Água/metabolismo , Sequência de Aminoácidos , Animais , Frutose/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Glucose/metabolismo , Hemípteros/classificação , Hemípteros/enzimologia , Hemípteros/crescimento & desenvolvimento , Homeostase , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Longevidade/genética , Metaboloma , Modelos Moleculares , Ninfa/enzimologia , Ninfa/crescimento & desenvolvimento , Filogenia , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sacarase/antagonistas & inibidores , Sacarase/metabolismo , Sacarose/metabolismo , Trealose/metabolismo
6.
Appl Microbiol Biotechnol ; 102(18): 7935-7950, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30043269

RESUMO

The fructophilic bacterium Lactobacillus kunkeei has promising applications as probiotics promoting the health of both honey bees and humans. Here, we report the synthesis of a highly branched dextran by L. kunkeei DSM 12361 and biochemical characterization of a GH70 enzyme (GtfZ). Sequence analysis revealed that GtfZ harbors two separate catalytic cores (CD1 and CD2), predicted to have glucansucrase and branching sucrase specificity, respectively. GtfZ-CD1 was not characterized biochemically due to its unsuccessful expression. With only sucrose as substrate, GtfZ-CD2 was found to mainly catalyze sucrose hydrolysis and leucrose synthesis. When dextran was available as acceptor substrate, GtfZ-CD2 displayed an efficient transglycosidase activity with sucrose as donor substrate. Kinetic analysis showed that the GtfZ-CD2-catalyzed transglycosylation reaction follows a Ping Pong Bi Bi mechanism, indicating the in-turn binding of donor and acceptor substrates in the active site. Structural characterization of the products revealed that GtfZ-CD2 catalyzes the synthesis of single glucosyl (α1 → 3) linked branches onto dextran, resulting in the production of highly branched comb-like α-glucan products. These (α1 → 3) branches can be formed on adjacent positions, as shown when isomaltotriose was used as acceptor substrate. Homology modeling of the GtfZ-CD1 and GtfZ-CD2 protein structure strongly suggests that amino acid differences in conserved motifs II, III, and IV in the catalytic domain contribute to product specificity. Our present study highlights the ability of beneficial lactic acid bacteria to produce structurally complex α-glucans and provides novel insights into the molecular mechanism of an (α1 → 3) branching sucrase.


Assuntos
Glicosiltransferases/química , Sacarase/química , Biocatálise , Domínio Catalítico , Dextranos/metabolismo , Glucanos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Cinética , Lactobacillus/química , Lactobacillus/enzimologia , Lactobacillus/genética , Sacarase/genética , Sacarase/metabolismo
7.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453261

RESUMO

Glucansucrases (GSs) in glycoside hydrolase family 70 (GH70) catalyze the synthesis of α-glucans from sucrose, a reaction that is widely seen in lactic acid bacteria (LAB). These enzymes have been implicated in many aspects of microbial life. Products of GSs have great commercial value as food supplements and medical materials; therefore, these enzymes have attracted much attention from both science and industry. Certain issues concerning the origin and evolution of GSs are still to be addressed, although an increasing number of GH70 enzymes have been characterized. This study describes a GS enzyme with the appearance of a branching sucrase (BrS). Structural analysis indicated that this GS enzyme produced a type of glucan composed of an α-(1→6) glucosidic backbone and α-(1→4) branches, as well as a considerable amount of α-(1→3) branches, distinguishing it from the GSs identified so far. Moreover, sequence-based analysis of the catalytic core of this enzyme suggested that it might be an evolutionary intermediate between the BrS and GS subgroups. These results provide an evolutionary link between these subgroups of GH70 enzymes and shed new light on the origination of GSs.IMPORTANCE GH70 GSs catalyze the synthesis of α-glucans from sucrose, a reaction that is widely seen in LAB. Products of these enzymes have great commercial value as food supplements and medical materials. Moreover, these enzymes have attracted much attention from scientists because they have potential in tailored synthesis of α-glucans with desired structures and properties. Although more and more GSs have been characterized, the origin and evolution of these enzymes have not been well addressed. This study describes a GS with the appearance of a BrS (i.e., high levels of similarity to BrSs in sequence analysis). Further analysis indicated that this enzyme synthesized a type of insoluble glucan composed of an α-(1→6) glucosidic backbone and many α-(1→4)- and α-(1→3)-linked branches, the linkage composition of which has rarely been reported in the literature. This BrS-like GS enzyme might be an evolutionary intermediate between BrS and GS enzymes.


Assuntos
Proteínas de Bactérias/genética , Glicosiltransferases/genética , Leuconostoc mesenteroides/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Leuconostoc mesenteroides/metabolismo , Filogenia , Alinhamento de Sequência , Sacarase/química , Sacarase/genética , Sacarase/metabolismo
8.
Food Funct ; 8(5): 1915-1924, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28443839

RESUMO

Diverse natural phenolic compounds show inhibition activity of intestinal α-glucosidases, which may constitute the molecular basis for their ability to control systemic glycemia. Additionally, phenolics can modify mRNA expression for proteins involved in nutritional, metabolic or immune processes. To explore the possibility that phenolics can regulate the mRNA expression, enzymatic activity, and protein synthesis/processing of intestinal Maltase-Glucoamylase (MGAM) and Sucrase-Isomaltase (SI), small intestinal explants from Balb/c mice were cultured for 24 h in the presence or absence of gallic acid, caffeic acid, and (+)-catechin at 0.1, 0.5, and 1 mM. We measured the levels of MGAM and SI mRNA expression by qRT-PCR, maltase and sucrase activities by a standard colorimetric method and the molecular size distribution of MGAM and SI proteins by western blotting. mRNA expression for MGAM was induced by the three phenolic compounds at 0.1 mM. mRNA expression for SI was induced by caffeic and gallic acids, but not by (+)-catechin. Caffeic acid was the most effective inducer of mRNA expression of these enzymes. Total maltase and sucrase activities were not affected by treatment with phenolics. The proportion of high molecular size forms of MGAM was significantly increased by two of the three phenolic compounds, but little effect was observed on SI proteins. Thus, changes in the protein synthesis/processing, affecting the proportions of the different molecular forms of MGAM, may account for the lack of correlation between mRNA expression and enzymatic activity.


Assuntos
Glucana 1,4-alfa-Glucosidase/metabolismo , Intestinos/enzimologia , Fenol/farmacologia , Sacarase/metabolismo , alfa-Glucosidases/metabolismo , Animais , Glucana 1,4-alfa-Glucosidase/genética , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sacarase/genética , alfa-Glucosidases/genética
9.
J Zhejiang Univ Sci B ; 17(10): 742-751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27704744

RESUMO

To investigate dietary protein level effects on digestive mechanisms, weaned piglets were fed for 45 d with diets containing 20%, 17%, or 14% crude protein (CP) supplemented to meet requirements for essential amino acids. This article describes the influence of dietary protein on gastrointestinal hormones and expression of an array of digestive enzymes in the gastrointestinal tract and pancreas. Results indicated that there were no significant differences in expression of enzymes involved in carbohydrate digestion, except for maltase in the duodenum. In the jejunum, amylase expression in pigs fed 20% CP was much higher than that in pigs fed other diets (P<0.05) and maltase expression in those fed 17% CP was higher than that in other treatments (P<0.05). Although there were no remarkable differences in expression of aminopeptidase in the small intestine or carboxypeptidase in the pancreas (P>0.05), there was a trend towards higher expression of various proteases in pigs fed 17% CP. The duodenal expression of enteropeptidase in diets with 14% and 17% CP was significantly higher than that with 20% CP (P<0.05), but treatment differences did not existed in jejunum (P>0.05). The expression of GPR93 as a nutrient-responsive G protein-coupled receptor in 14% and 17% CP diets was significantly higher than that in 20% CP diet in the small intestine (P<0.05). The expressions of genes for pancreatic enzymes, lipase and elastase, were significantly higher in pigs fed diets with low CP, while similar trends occurred for carboxypeptidase, chymotrypsin and amylase. Conversely, the gastric expressions of pepsinogen A and progastricsin were lower with the 17% CP diet. Differences between treatments were found in the gastric antral contents of cholecystokinin and somatostatin: both increased in pigs fed 17% CP, accompanied by decreased content of motilin, which was also seen in plasma concentrations. These patterns were not reflected in duodenal contents. In general, 17% dietary CP was beneficial to the digestion of nutrient substance in the gastrointestinal tract.


Assuntos
Proteínas Alimentares/administração & dosagem , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Envelhecimento , Aminopeptidases/genética , Animais , Expressão Gênica/efeitos dos fármacos , Glucosidases/genética , Lipase/genética , Elastase Pancreática/genética , Sacarase/genética , Suínos
10.
J Agric Food Chem ; 64(36): 6848-55, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27550198

RESUMO

Glucansucrases produce α-glucans and gluco-oligosaccharides; the linkage type and molecular weight of glucans impacts their functionality. This study compared the catalytic specificities of dextransucrase DsrM from Weissella cibaria 10M and derivatives of this enzymes with GtfA from Lactobacillus reuteri TMW1.656. The N-variable region, which is dispensable for GtfA activity, was essential for DsrM activity. Parallel amino acid substitutions in DsrM-ΔS and GtfA-ΔN indicated that the acceptor binding site residues determining the linkage type differ in these enzymes. DsrM-V583P:V586I had comparable enzyme activity as the respective GtfA derivative but did not increase the proportion of α-(1→4) linkages. DsrM-S622N had low enzyme activity and an unaltered proportion of α-(1→4) linkages while the analogous GtfA-S1062N maintained enzyme activity but increased the proportion of α-(1→4) linkages. This study of dextransucrase from Weissella spp. thus elucidated differences between glucansucrases and will facilitate study of the structure-function relationships of dextran and isomalto-oligosaccharides.


Assuntos
Glucosiltransferases/genética , Mutagênese Sítio-Dirigida , Sacarase/genética , Weissella/enzimologia , Substituição de Aminoácidos , Sítios de Ligação , Dextranos/química , Glucanos/química , Glucosiltransferases/química , Limosilactobacillus reuteri/enzimologia , Oligossacarídeos , Sacarase/química , Weissella/genética
11.
Br J Nutr ; 115(9): 1509-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26983845

RESUMO

The aim of the present study was to assess the effects of dietary supplementation with epidermal growth factor (EGF)-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. In total, forty piglets weaned at 21-26 d of age were assigned to one of the five groups that were provided basic diet (control group) or diet supplemented with S. cerevisiae expressing either empty-vector (INVSc1(EV) group), tagged EGF (T-EGF) (INVSc1-TE(-) group), extracellular EGF (EE-EGF) (INVSc1-EE(+) group) or intracellular EGF (IE-EGF) (INVSc1-IE(+) group). All treatments were delivered as 60·00 µg/kg body weight EGF/d. On 0, 7, 14 and 21 d, eight piglets per treatment were sacrificed to analyse the morphology, activities and mRNA expressions of digestive enzymes, as well as Ig levels (IgA, IgM, IgG) in duodenal mucosa. The results showed significant improvement on 7, 14 and 21 d, with respect to average daily gain (P<0·05), mucosa morphology (villus height and crypt depth) (P<0·05), Ig levels (P<0·01), activities and mRNA expressions of digestive enzymes (creatine kinase, alkaline phosphatase, lactate dehydrogenase and sucrase) (P<0·05) and the mRNA expression of EGF-receptor (P<0·01) in NVSc1-TE(-), INVSc1-EE(+) and INVSc1-IE(+) groups compared with control and INVSc1(EV) groups. In addition, a trend was observed in which the INVSc1-IE(+) group showed an improvement in Ig levels (0·05

Assuntos
Suplementos Nutricionais , Duodeno/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Creatina Quinase/genética , Creatina Quinase/metabolismo , Duodeno/crescimento & desenvolvimento , Duodeno/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Receptores ErbB/genética , Receptores ErbB/metabolismo , Imunoglobulinas/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactococcus lactis , RNA Mensageiro/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Sacarase/genética , Sacarase/metabolismo , Suínos , Desmame
12.
J Biol Chem ; 291(14): 7527-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865636

RESUMO

The α-(1→2) branching sucrase ΔN123-GBD-CD2 is a transglucosylase belonging to glycoside hydrolase family 70 (GH70) that catalyzes the transfer ofd-glucosyl units from sucroseto dextrans or gluco-oligosaccharides via the formation of α-(1→2) glucosidic linkages. The first structures of ΔN123-GBD-CD2 in complex withd-glucose, isomaltosyl, or isomaltotriosyl residues were solved. The glucose complex revealed three glucose-binding sites in the catalytic gorge and six additional binding sites at the surface of domains B, IV, and V. Soaking with isomaltotriose or gluco-oligosaccharides led to structures in which isomaltosyl or isomaltotriosyl residues were found in glucan binding pockets located in domain V. One aromatic residue is systematically identified at the bottom of these pockets in stacking interaction with one glucosyl moiety. The carbohydrate is also maintained by a network of hydrogen bonds and van der Waals interactions. The sequence of these binding pockets is conserved and repeatedly present in domain V of several GH70 glucansucrases known to bind α-glucans. These findings provide the first structural evidence of the molecular interaction occurring between isomalto-oligosaccharides and domain V of the GH70 enzymes.


Assuntos
Proteínas de Bactérias/química , Oligossacarídeos/química , Sacarase/química , Proteínas de Bactérias/genética , Estrutura Terciária de Proteína , Sacarase/genética
13.
J Biol Chem ; 291(14): 7687-702, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26763236

RESUMO

Leuconostoc citreumNRRL B-742 has been known for years to produce a highly α-(1→3)-branched dextran for which the synthesis had never been elucidated. In this work a gene coding for a putative α-transglucosylase of the GH70 family was identified in the reported genome of this bacteria and functionally characterized. From sucrose alone, the corresponding recombinant protein, named BRS-B, mainly catalyzed sucrose hydrolysis and leucrose synthesis. However, in the presence of sucrose and a dextran acceptor, the enzyme efficiently transferred the glucosyl residue from sucrose to linear α-(1→6) dextrans through the specific formation of α-(1→3) linkages. To date, BRS-B is the first reported α-(1→3) branching sucrase. Using a suitable sucrose/dextran ratio, a comb-like dextran with 50% of α-(1→3) branching was synthesized, suggesting that BRS-B is likely involved in the comb-like dextran produced byL. citreumNRRL B-742. In addition, data mining based on the search for specific sequence motifs allowed the identification of two genes putatively coding for branching sucrases in the genome ofLeuconostoc fallaxKCTC3537 andLactobacillus kunkeeiEFB6. Biochemical characterization of the corresponding recombinant enzymes confirmed their branching specificity, revealing that branching sucrases are not only found inL. citreumspecies. According to phylogenetic analyses, these enzymes are proposed to constitute a new subgroup of the GH70 family.


Assuntos
Proteínas de Bactérias , Leuconostoc/enzimologia , Sacarase , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sacarase/química , Sacarase/genética , Sacarase/metabolismo
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 31(12): 1629-32, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-26648296

RESUMO

OBJECTIVE: To construct prokaryotic expression vector pET-28a(+)-human sucrase (hSUC) and express hSUC fusion protein in E.coli. METHODS: The hSUC gene fragment was amplified by reverse transciption PCR (RT-PCR) and cloned into pET-28a(+) vector to construct the prokaryotic expression vector pET-28a(+)-hSUC. The recombinant plasmid was then transformed into E.coli BL21. Hisdidine (His)-tagged fusion proteins were induced by isopropyl-beta-D-thiogalactopyranoside (IPTG) and purified by nitrilotriacetic acid (Ni-NTA) agarose resin. The purified fusion proteins were identified by SDS-PAGE and Western blotting. RESULTS: RT-PCR showed that sub-clone of hSUC was about 1482 bp. The recombinant plasmid was correctly constructed as demonstrated by sequencing and restriction enzyme analysis. The molecular mass of the fusion protein was about 61 240. Western blotting showed that the fusion proteins bound specifically to hSUC antibody. CONCLUSION: The hSUC protein has been successfully expressed and purified in E.coli.


Assuntos
Escherichia coli/genética , Sacarase/genética , Sacarase/isolamento & purificação , Western Blotting , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Sacarase/química , Sacarase/metabolismo
15.
J Biosci Bioeng ; 119(5): 515-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25454699

RESUMO

Fructan-exopolysaccharides (fructan-EPS) (inulin and levan) and their oligosaccharides (fructooligosaccharides, FOS) have drawn considerable interest in the food and pharmaceutical industries. EPS-producing lactic acid bacteria have been reported to produce ß-fructans (inulin and levan), as well as α-glucans, by the function of sucrase enzymes, i.e., fructansucrase and glucansucrase. A fructansucrase ftfCNC-2(1) gene from Weissella confusa strain MBFCNC-2(1) was previously cloned in Escherichia coli. In this study, we aimed to express the ftf[CNC-2(1)] gene in Bacillus subtilis to obtain the active form of the extracellular recombinant protein FTF[CNC-2(1)]. This cloning was achieved by inserting the gene in-fusion with the signal sequence of the B. subtilis subtilisin E. SDS-polyacrylamide gel electrophoresis analysis and in situ activity assay with Periodic Acid-Schiff staining revealed that the recombinant FTF[CNC-2(1)] was successfully expressed as an extracellular protein from B. subtilis DB403 in its active form, which was confirmed using sucrose and raffinose.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/genética , Espaço Extracelular/enzimologia , Sacarase/genética , Sacarase/metabolismo , Weissella/enzimologia , Weissella/genética , Clonagem Molecular , Frutanos/metabolismo , Inulina/metabolismo , Oligossacarídeos/metabolismo , Sinais Direcionadores de Proteínas/genética , Rafinose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subtilisinas/genética , Sacarose/metabolismo
16.
Drug Metab Pharmacokinet ; 29(1): 44-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23822979

RESUMO

  Human induced pluripotent stem (iPS) cells were differentiated into the endoderm using activin A and were then treated with fibroblast growth factor 2 (FGF2) for differentiation into intestinal stem cell-like cells. These immature cells were then differentiated into enterocyte-like cells using epidermal growth factor (EGF) in 2% fetal bovine serum (FBS). At the early stage of differentiation, mRNA expression of caudal type homeobox 2 (CDX2), a major transcription factor related to intestinal development and differentiation, and leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), an intestinal stem cell marker, was markedly increased by treatment with FGF2. When cells were cultured in medium containing EGF and a low concentration of FBS, mRNAs of specific markers of intestinal epithelial cells, including sucrase-isomaltase, the intestinal oligopeptide transporter SLC15A1/peptide transporter 1 (PEPT1), and the major metabolizing enzyme CYP3A4, were expressed. In addition, sucrase-isomaltase protein expression and uptake of ß-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (ß-Ala-Lys-AMCA), a fluorescence-labeled substrate of the oligopeptide transporter, were detected. These results demonstrate a simple and direct method for differentiating human iPS cells into functional enterocyte-like cells.


Assuntos
Eritrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Biomarcadores/metabolismo , Bovinos , Diferenciação Celular , Linhagem Celular , Cumarínicos/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Dipeptídeos/metabolismo , Eritrócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligo-1,6-Glucosidase/genética , Oligo-1,6-Glucosidase/metabolismo , Transportador 1 de Peptídeos , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sacarase/genética , Sacarase/metabolismo , Simportadores/genética , Simportadores/metabolismo
17.
J Biol Chem ; 287(11): 7915-24, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262856

RESUMO

ΔN(123)-glucan-binding domain-catalytic domain 2 (ΔN(123)-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN(123)-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite -1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN(123)-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN(123)-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN(123)-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.


Assuntos
Proteínas de Bactérias/química , Leuconostoc/enzimologia , Dobramento de Proteína , Sacarase/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dextranos/genética , Dextranos/metabolismo , Leuconostoc/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sacarase/genética , Sacarase/metabolismo
18.
Mol Cell Biochem ; 361(1-2): 71-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21964563

RESUMO

The effect of alloxan-induced gestational diabetes on the postnatal development of brush border disaccharidases and D-glucose transport in rat intestine was studied. Pups born to diabetic mothers showed 92-22% increase in blood sugar levels compared with the controls. Western blot and RT-PCR analyses revealed that the activities of brush border sucrase, lactase and Sodium Glucose Co-transporter 1 (SGLT1) correlates with protein and mRNA levels in intestine of pups born to diabetic rat mothers after 5-45 days of birth. Intestinal histology in pups born to diabetic mothers at day 10 and 45 after birth showed distorted cellular organization of mucosa with a decrease in the number of secretary goblet cells and regression of tubular mass. These findings suggest that the genetic switch in utero regulates the postnatal expression of enzyme and transport functions in intestine of pups born to diabetic rat mothers. This may influence the growth and development of offsprings later in life.


Assuntos
Diabetes Mellitus Experimental/sangue , Diabetes Gestacional/sangue , Absorção Intestinal , Intestinos/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/sangue , Animais , Glicemia , Feminino , Expressão Gênica , Glucose/metabolismo , Intestinos/enzimologia , Intestinos/patologia , Intestinos/fisiopatologia , Lactase/genética , Lactase/metabolismo , Microvilosidades/enzimologia , Gravidez , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Sacarase/genética , Sacarase/metabolismo
19.
Arch Microbiol ; 191(6): 529-41, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19415238

RESUMO

In Zymomonas mobilis, the extracellular levansucrase (SacB) and extracellular sucrase (SacC) are involved in sucrose hydrolysis. Genes coding for these two enzymes (sacB and sacC) are arranged in a cluster in the genome and separated by a short intervening sequence. The level of sacC transcript was 12-fold higher than that of sacB transcript. On the other hand, transcript stability analysis in sucrose grown cultures revealed that the half-life of the sacB transcripts (153 s) was more than twofold higher than that of sacC transcript (66 s). The decay curves of sacB and sacC transcripts analyzed by the semi-quantitative RT-PCR correlated well with the decay curves of the respective enzyme activities. In the sacB promoter disruption mutant, Z. moblis BT2, the extracellular sucrase activity decreased from 2.6 to 2.0 U mg(-1) in sucrose medium due to the loss of SacB expression. The expression of sacC in the absence of the sacB promoter suggested that these two genes could be transcribed as different mRNAs. The promoter-lacZ fusion studies in Escherichia coli proved that the short intervening region acts as a strong promoter for the sacC gene.


Assuntos
Proteínas de Bactérias/genética , Hexosiltransferases/genética , Regiões Promotoras Genéticas , Estabilidade de RNA , Sacarase/genética , Zymomonas/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Hexosiltransferases/metabolismo , Dados de Sequência Molecular , Família Multigênica , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , Sacarase/metabolismo , Zymomonas/enzimologia
20.
J Cell Physiol ; 213(3): 834-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17786952

RESUMO

Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.


Assuntos
Polaridade Celular , Enterócitos/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sacarose/metabolismo , Edulcorantes/metabolismo , Animais , Células CACO-2 , Clonagem Molecular , Frutose/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Jejuno/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Oligo-1,6-Glucosidase/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Sacarase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA