Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Food Chem ; 444: 138685, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341917

RESUMO

The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.


Assuntos
Salmão , Alimentos Marinhos , Animais , Salmão/microbiologia , Alimentos Marinhos/microbiologia , Antibacterianos/farmacologia , Ácido Aminolevulínico , Proteínas Musculares , Poliésteres , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos
2.
J Fish Dis ; 47(2): e13885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947250

RESUMO

Here, we provide evidence that the freshwater parasitic copepod, Salmincola californiensis, acts as a vector for Aeromonas salmonicida. While investigating the effects of S. californiensis on Chinoook salmon (Oncorhynchus tshawytscha), we tangentially observed that fish infected with the copepod developed furunculosis, caused by A. salmonicida. This occurred despite being reared in pathogen-free well water in a research facility with no prior history of spontaneous infection. We further investigated the possibility of S. californiensis to serve as a vector for the bacterium via detection of fluorescently labelled A. salmonicida inside the egg sacs from copepods in which the fish hosts were experimentally infected with GFP-A449 A. salmonicida. We then evaluated copepod egg sacs that were collected from adult Chinook salmon from a freshwater hatchery with A. salmonicida infections confirmed by either culture or PCR. The bacterium was cultured on tryptic soy agar plates from 75% of the egg sacs, and 61% were positive by PCR. These three separate experiments indicate an alternative tactic of transmission in addition to direct transmission of A. salmonicida in captivity. The copepod may play an important role in transmission of the bacterium when fish are more dispersed, such as in the wild.


Assuntos
Aeromonas salmonicida , Aeromonas , Copépodes , Doenças dos Peixes , Furunculose , Infecções por Bactérias Gram-Negativas , Salmonidae , Animais , Furunculose/microbiologia , Doenças dos Peixes/microbiologia , Salmão/microbiologia , Água Doce , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
3.
Probiotics Antimicrob Proteins ; 16(2): 394-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36928486

RESUMO

Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.


Assuntos
Bacteriocinas , Listeria , Humanos , Animais , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/química , Pediococcus pentosaceus/genética , RNA Ribossômico 16S/genética , Pediococcus , Antibacterianos/farmacologia , Plasmídeos , Salmão/microbiologia , Peptídeos Antimicrobianos
4.
Food Res Int ; 173(Pt 2): 113362, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803703

RESUMO

Cold smoked salmon (CSS) is a high-value ready-to-eat product, but it generally has a short shelf-life even under refrigeration and can support the growth of Listeria monocytogenes. Therefore, the objective of this study was to examine the growth and survival of L. monocytogenes in CSS during refrigerated storage and temperature abuse. The growth and survival data of L. monocytogenes (116 records, 465 data points) were retrieved from ComBase (https://www.combase.cc). All records contained storage time and temperature, but other information (aw, pH, and salt) was not fully documented. Each data point, normalized with the initial population to calculate relative growth (RG, log CFU/g), was used to classify the probability of growth. Eighty percent (80%) of the data were randomly sampled for examining the effect of storage time and temperature on growth of L. monocytogenes, while the remaining 20% were set aside for model validation. Logistic regression was used to develop a model for classifying L. monocytogenes growth according to 7 different control thresholds (CT), ranging from 0 to 3 log CFU/g in RG. A probability threshold was set to judge if the bacterial growth has exceeded a CT. The validation showed > 89% of true negative rate for not exceeding the control thresholds. A dynamic method was then developed and demonstrated to predict the growth probabilities under fluctuating temperature conditions. The result of this study suggested that storage time and temperature could be used to predict the growth of L. monocytogenes in CSS and to control listeriosis using a risk-based strategy. It can be used by the retailers and consumers to determine if a packaged product is safe to consume based on its time and temperature history.


Assuntos
Listeria monocytogenes , Animais , Temperatura , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Salmão/microbiologia
5.
J Wildl Dis ; 59(4): 545-556, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791744

RESUMO

Improving rapid detection methods for pathogens is important for research as we collectively aim to improve the health of ecosystems globally. In the northern hemisphere, the success of salmon (Oncorhynchus spp.) populations is vitally important to the larger marine, aquatic, and terrestrial ecosystems they inhabit. This has led to managers cultivating salmon in hatcheries and aquaculture to bolster their populations, but young salmon face many challenges, including diseases such as bacterial kidney disease (BKD). Early detection of the BKD causative agent, Renibacterium salmoninarum, is useful for managers to avoid outbreaks in hatcheries and aquaculture stocks to enable rapid treatment with targeted antibiotics. Isothermal amplification and CRIPSR-Cas12a systems may enable sensitive, relatively rapid, detection of target DNA molecules from environmental samples compared to quantitative PCR (qPCR) and culture methods. We used these technologies to develop a sensitive and specific rapid assay to detect R. salmoninarum from water samples using isothermal recombinase polymerase amplification (RPA) and an AsCas12a RNA-guided nuclease detection. The assay was specific to R. salmoninarum (0/10 co-occurring or closely related bacteria detected) and sensitive to 0.0128 pg/µL of DNA (approximately 20-40 copies/µL) within 10 min of Cas activity. This assay successfully detected R. salmoninarum environmental DNA in 14/20 water samples from hatcheries with known quantification for the pathogen via previous qPCR (70% of qPCR-positive samples). The RPA-CRISPR/AsCas12a assay had a limit of detection (LOD) of >10 copies/µL in the hatchery water samples and stochastic detection below 10 copies/µL, similar to but slightly higher than the qPCR assay. This LOD enables 37 C isothermal detection, potentially in the field, of biologically relevant levels of R. salmoninarum in water. Further research is needed to develop easy-to-use, cost-effective, sensitive RPA/CRISPR-AsCas12a assays for rapidly detecting low concentrations of wildlife pathogens in environmental samples.


Assuntos
DNA Ambiental , Doenças dos Peixes , Nefropatias , Micrococcaceae , Animais , Animais Selvagens , Sistemas CRISPR-Cas , Ecossistema , Micrococcaceae/genética , Nefropatias/microbiologia , Nefropatias/veterinária , Salmão/genética , Salmão/microbiologia , Água , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia
6.
Ultrason Sonochem ; 95: 106389, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003214

RESUMO

Vibrio parahaemolyticus is a typical marine bacterium, which often contaminates seafood and poses a health risk to consumers. Some non-thermal sterilization technologies, such as ultrasonic field (UF) and blue light (BL) irradiation, have been widely used in clinical practice due to their efficiency, safety, and avoidance of drug resistance, but their application in food preservation has not been extensively studied. This study aims to investigate the effect of BL on V. parahaemolyticus in culture media and in ready-to-eat fresh salmon, and to evaluate the killing effectiveness of the UF combined with BL treatment on V. parahaemolyticus. The results showed that BL irradiation at 216 J/cm2 was effective in causing cell death (close to 100%), cell shrinkage and reactive oxygen species (ROS) burst in V. parahaemolyticus. Application of imidazole (IMZ), an inhibitor of ROS generation, attenuated the cell death induced by BL, indicating that ROS were involved in the bactericidal effects of BL on V. parahaemolyticus. Furthermore, UF for 15 min enhanced the bactericidal effect of BL at 216 J/cm2 on V. parahaemolyticus, with the bactericidal rate of 98.81%. In addition, BL sterilization did not affect the color and quality of salmon, and the additive UF treatment for 15 min did not significant impact on the color of salmon. These results suggest that BL or UF combined with BL treatment has potential for salmon preservation, however, it is crucial to strictly control the intensity of BL and the duration of UF treatment to prevent reducing the freshness and brightness of salmon.


Assuntos
Vibrio parahaemolyticus , Animais , Salmão/microbiologia , Espécies Reativas de Oxigênio , Alimentos Marinhos , Antibacterianos/farmacologia
7.
J Fish Dis ; 46(4): 309-319, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606373

RESUMO

Vertical transmission of Renibacterium salmoninarum has been well-documented in anadromous salmonids but not in hatchery-reared inland trout. We assessed whether the bacterium is vertically transmitted in cutthroat trout (Oncorhynchus clarkii) from a Colorado, USA hatchery, and assessed the rate of transmission from male and female brood fish. Adult brood fish were killed, tested for R. salmoninarum in kidney, liver, spleen, ovarian fluid, blood and mucus samples, then stripped of gametes to create 32 families with four infection treatments (MNFN, MNFP, MPFN, MPFP; M: male, F: female, P: positive, N: negative). Progeny from each treatment was sampled at 6 and 12 months to test for the presence of R. salmoninarum with an enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Our study indicated that vertical transmission was high and occurred among 60% of families across all infection treatments. However, the average proportion of infected progeny from individual families was low, ranging from 1% (MNFP, MPFN and MPFP treatments) up to 21% (MPFP treatment). Hatcheries rearing inland salmonids would be well suited to limit vertical transmission through practices such as lethal culling because any amount of transmission can perpetuate the infection throughout fish on a hatchery.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Micrococcaceae , Oncorhynchus , Feminino , Masculino , Animais , Salmão/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Doenças dos Peixes/microbiologia , Truta
8.
Front Cell Infect Microbiol ; 12: 1067514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544910

RESUMO

Piscirickettsiosis is a fish disease caused by the Gram-negative bacterium Piscirickettsia salmonis. This disease has a high socio-economic impact on the Chilean salmonid aquaculture industry. The bacterium has a cryptic character in the environment and their main reservoirs are yet unknown. Bacterial biofilms represent a ubiquitous mechanism of cell persistence in diverse natural environments and a risk factor for the pathogenesis of several infectious diseases, but their microbiological significance for waterborne veterinary diseases, including piscirickettsiosis, have seldom been evaluated. This study analyzed the in vitro biofilm behavior of P. salmonis LF-89T (genogroup LF-89) and CA5 (genogroup EM-90) using a multi-method approach and elucidated the potential arsenal of virulence of the P. salmonis LF-89T type strain in its biofilm state. P. salmonis exhibited a quick kinetics of biofilm formation that followed a multi-step and highly strain-dependent process. There were no major differences in enzymatic profiles or significant differences in cytotoxicity (as tested on the Chinook salmon embryo cell line) between biofilm-derived bacteria and planktonic equivalents. The potential arsenal of virulence of P. salmonis LF-89T in biofilms, as determined by whole-transcriptome sequencing and differential gene expression analysis, consisted of genes involved in cell adhesion, polysaccharide biosynthesis, transcriptional regulation, and gene mobility, among others. Importantly, the global gene expression profiles of P. salmonis LF-89T were not enriched with virulence-related genes upregulated in biofilm development stages at 24 and 48 h. An enrichment in virulence-related genes exclusively expressed in biofilms was also undetected. These results indicate that early and mature biofilm development stages of P. salmonis LF-89T were transcriptionally no more virulent than their planktonic counterparts, which was supported by cytotoxic trials, which, in turn, revealed that both modes of growth induced important and very similar levels of cytotoxicity on the salmon cell line. Our results suggest that the aforementioned biofilm development stages do not represent hot spots of virulence compared with planktonic counterparts. This study provides the first transcriptomic catalogue to select specific genes that could be useful to prevent or control the (in vitro and/or in vivo) adherence and/or biofilm formation by P. salmonis and gain further insights into piscirickettsiosis pathogenesis.


Assuntos
Doenças dos Peixes , Infecções por Piscirickettsiaceae , Animais , Virulência , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia , Comportamento de Massa , Peixes/microbiologia , Salmão/microbiologia , Biofilmes , Doenças dos Peixes/microbiologia
9.
Food Chem ; 383: 132425, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182876

RESUMO

In this study, active biopolymer trays, being part of the biodegradable packaging, were developed and characterised. The aim of our research was to determine how active packaging (trays + films) affects the quality of salmon storage. The trays had high antioxidant potential and were biodegradable, however, they limited germination and seed growth, which may have been caused by the low pH of the material. Furthermore, the applied packaging demonstrated a potential possible inhibitory effect on the accumulation of biogenic amines and the growth of microorganisms responsible for the spoilage of salmon fillets. Compared to the control group, fillets stored in the tested pack had a 19% lower total bacteria count on the 6th day of storage. The innovative packing is easily biodegradable and prolongs the shelf-life of salmon fillets, therefore, it shows promise as a packaging material for perishable food products.


Assuntos
Embalagem de Alimentos , Salmão , Alginatos , Animais , Conservação de Alimentos , Expectativa de Vida , Gomas Vegetais , Salmão/microbiologia , Chá
10.
Mol Immunol ; 142: 120-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979452

RESUMO

Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.


Assuntos
Acetilglucosamina/química , Fusarium/imunologia , Mucor/imunologia , Micoses/imunologia , Oncorhynchus mykiss/microbiologia , Salmão/microbiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Apoptose/fisiologia , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Rim Cefálico/metabolismo , Interleucina-6/genética , Lectinas Tipo C/genética , Processamento de Proteína Pós-Traducional , Receptor 3 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
11.
Microbiologyopen ; 10(6): e1246, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964295

RESUMO

Identification, source tracking, and surveillance of food pathogens are crucial factors for the food-producing industry. Over the last decade, the techniques used for this have moved from conventional enrichment methods, through species-specific detection by PCR to sequencing-based methods, whole-genome sequencing (WGS) being the ultimate method. However, using WGS requires the right infrastructure, high computational power, and bioinformatics expertise. Therefore, there is a need for faster, more cost-effective, and more user-friendly methods. A newly developed method, ON-rep-seq, combines the classical rep-PCR method with nanopore sequencing, resulting in a highly discriminating set of sequences that can be used for species identification and also strain discrimination. This study is essentially a real industry case from a salmon processing plant. Twenty Listeria monocytogenes isolates were analyzed both by ON-rep-seq and WGS to identify and differentiate putative L. monocytogenes from a routine sampling of processing equipment and products, and finally, compare the strain-level discriminatory power of ON-rep-seq to different analyzing levels delivered from the WGS data. The analyses revealed that among the isolates tested there were three different strains. The isolates of the most frequently detected strain (n = 15) were all detected in the problematic area in the processing plant. The strain level discrimination done by ON-rep-seq was in full accordance with the interpretation of WGS data. Our findings also demonstrate that ON-rep-seq may serve as a primary screening method alternative to WGS for identification and strain-level differentiation for surveillance of potential pathogens in a food-producing environment.


Assuntos
Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Listeria monocytogenes/classificação , Sequenciamento por Nanoporos , Reação em Cadeia da Polimerase , Salmão/microbiologia , Animais , Análise Custo-Benefício , Genoma Bacteriano , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
12.
J Food Prot ; 85(2): 238-253, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614175

RESUMO

ABSTRACT: Cold-smoked salmon is a ready-to-eat seafood product of high commercial importance. The processing and storage steps facilitate the introduction, growth, and persistence of foodborne pathogens and spoilage bacteria. The growth of commensal bacteria during storage and once the product is opened also influence the quality and safety of cold-smoked salmon. Here we investigated the microbial community through targeted 16S rRNA gene and shotgun metagenomic sequencing as means to better understand the interactions among bacteria in cold-smoked salmon. Cold-smoked salmon samples were tested over 30 days of aerobic storage at 4°C and cultured at each time point in a buffered Listeria enrichment broth (BLEB) commonly used to detect Listeria in foods. The microbiomes were composed of Firmicutes and Proteobacteria, namely, Carnobacterium, Brochothrix, Pseudomonas, Serratia, and Psychrobacter. Pseudomonas species were the most diverse species, with 181 taxa identified. In addition, we identified potential homologs to 10 classes of bacteriocins in microbiomes of cold-smoked salmon stored at 4°C and corresponding BLEB culture enrichments. The findings presented here contribute to our understanding of microbiome population dynamics in cold-smoked salmon, including changes in bacterial taxa during aerobic cold storage and after culture enrichment. This may facilitate improvements to pathogen detection and quality preservation of this food.


Assuntos
Listeria monocytogenes , Microbiota , Animais , Temperatura Baixa , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Conservação de Alimentos , Dinâmica Populacional , RNA Ribossômico 16S , Salmão/microbiologia , Alimentos Marinhos/microbiologia , Fumaça
13.
BMC Microbiol ; 21(1): 244, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488629

RESUMO

BACKGROUND: Fish skin represents an ancient vertebrate mucosal surface, sharing characteristics with other mucosal surfaces including those of the intestine. The skin mucosa is continuously exposed to microbes in the surrounding water and is therefore important in the first line defense against environmental pathogens by preventing bacteria from accessing the underlying surfaces. Understanding the microbe-host interactions at the fish skin mucosa is highly relevant in order to understand and control infection, commensalism, colonization, persistence, infection, and disease. Here we investigate the interactions between the pathogenic bacteria Aeromonas salmonicida (A. salmonicida) and Yersinia ruckeri (Y. ruckeri), respectively, and the skin mucosal surface of Atlantic salmon fry using AFM force spectroscopy. RESULTS: The results obtained revealed that when retracting probes functionalized with bacteria from surfaces coated with immobilized mucins, isolated from salmon mucosal surfaces, rupture events reflecting the disruption of adhesive interactions were observed, with rupture strengths centered around 200 pN. However, when retracting probes functionalized with bacteria from the intact mucosal surface of salmon fish fry no adhesive interactions could be detected. Furthermore, rheological measurements revealed a near fluid-like behavior for the fish fry skin mucus. Taken together, the experimental data indicate that the adhesion between the mucin molecules within the mucous layer may be significantly weaker than the interaction between the bacteria and the mucin molecules. The bacteria, immobilized on the AFM probe, do bind to individual mucins in the mucosal layer, but are released from the near fluid mucus with little resistance upon retraction of the AFM probe, to which they are immobilized. CONCLUSION: The data provided in the current paper reveal that A. salmonicida and Y. ruckeri do bind to the immobilized mucins. However, when retracting the bacteria from intact mucosal surfaces, no adhesive interactions are detected. These observations suggest a mechanism underlying the protective function of the mucosal surface based on the clearing of potential threats by adhering them to loosely attached mucus that is subsequently released from the fish skin.


Assuntos
Aderência Bacteriana , Microscopia de Força Atômica/métodos , Mucosa/microbiologia , Muco/microbiologia , Salmão/microbiologia , Pele/microbiologia , Aeromonas salmonicida/patogenicidade , Aeromonas salmonicida/fisiologia , Animais , Bactérias/classificação , Bactérias/patogenicidade , Doenças dos Peixes/microbiologia , Muco/metabolismo , Yersinia ruckeri/patogenicidade , Yersinia ruckeri/fisiologia
14.
Int J Food Microbiol ; 356: 109353, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411997

RESUMO

Among pathogens, L. monocytogenes has the capability to persist on Food Processing Environment (FPE), first of all posing safety issues, then economic impact on productivity. The aim of this work was to determine the influence of biofilm forming-ability and molecular features on the persistence of 19 Listeria monocytogenes isolates obtained from FPE, raw and processed products of a cold-smoked salmon processing plant. To verify the phenotypic and genomic correlations among the isolates, different analyses were employed: serotyping, Clonal Complex (CC), core genome Multi-Locus Sequence Typing (cgMLST) and Single Nucleotide Polymorphisms (SNPs) clustering, and evaluation of the presence of virulence- and persistence-associated genes. From our results, the biofilm formation was significantly higher (*P < 0.05) at 37 °C, compared to 30 and 12 °C, suggesting a temperature-dependent behaviour. Moreover, the biofilm-forming ability showed a strain-specific trend, not correlated with CC or with strains persistence. Instead, the presence of internalin (inL), Stress Survival Islet (SSI) and resistance to erythromycin (ermC) genes was correlated with the ability to produce biofilms. Our data demonstrate that the genetic profile influences the adhesion capacity and persistence of L. monocytogenes in food processing plants and could be the result of environmental adaptation in response to the external selective pressure.


Assuntos
Biofilmes , Microbiologia de Alimentos , Listeria monocytogenes , Animais , Manipulação de Alimentos , Indústria Alimentícia , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Salmão/microbiologia
15.
Food Microbiol ; 99: 103679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119089

RESUMO

Photobacterium spp. occur frequently in marine environments but have been recently also found as common spoilers on chilled meats. The environmental conditions in these ecological niches differ especially regarding salinity and ambient pressure. Linking the occurrence of photobacteria in different niches may elucidate its ecology and bring insights for the food industry. We investigated tolerance of Photobacterium (P.) phosphoreum and P. carnosum strains to high hydrostatic pressure and salinity and aligned our observations with presence of relevant genes. The strains were isolated from packaged meats and salmon (or the sea) to identify adaptations to marine and terrestrial habitats. Growth of all P. carnosum strains was reduced by 40 MPa hydrostatic pressure and >3% sodium chloride, suggesting loss of traits associated with marine habitats. In contrast, P. phosphoreum strains were only slightly affected, suggesting general adaptation to marine habitats. In accordance, these strains had gene clusters associated with marine niches, e.g. flagellar and lux-operons, being incomplete in P. carnosum. Occurrence of P. carnosum strains on packaged salmon and P. phosphoreum strains on meats therefore likely results from cross-contamination in meat and fish processing. Still, these strains showed intermediate traits regarding pressure- and halotolerance, suggesting developing adaptation to their respective environment.


Assuntos
Carne/microbiologia , Photobacterium/metabolismo , Salmão/microbiologia , Cloreto de Sódio/metabolismo , Animais , Bovinos , Galinhas , Microbiologia de Alimentos , Pressão Hidrostática , Photobacterium/química , Photobacterium/crescimento & desenvolvimento , Photobacterium/isolamento & purificação , Água do Mar/microbiologia , Cloreto de Sódio/análise
16.
Food Chem ; 359: 129974, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964662

RESUMO

The effect of curcumin-mediated blue light-emitting diode (LED) photodynamic inactivation (PDI) for preserving the quality of salmon contaminated with Listeria monocytogenes was investigated by microbiological, physical, chemical and histological methods during sample storage at 4 â„ƒ and 25 â„ƒ. The results showed that PDI decelerated the proliferation of L. monocytogenes on salmon during storage at 25 â„ƒ, with the maximum inhibition reaching 4.0 log10 CFU/g (99.99%), compared to the negative control. Moreover, PDI greatly retarded the increase in pH (P < 0.05) and the production of TVB-N, retarded the accumulation of free fatty acids, and decelerated the degradation of proteins, ultimately preserving the high nutritional value of the salmon. In addition, PDI effectively prevented a change in colour and retarded the loss of water from the salmon, thereby conserving its texture and sensory properties. Therefore, PDI is a promising and valid non-thermal technology to use for fish preservation.


Assuntos
Curcumina/farmacologia , Listeria monocytogenes/isolamento & purificação , Fotoquimioterapia , Salmão/microbiologia , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Conservação de Alimentos/métodos
17.
PLoS One ; 16(3): e0248098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667267

RESUMO

BACKGROUND: Salmonid rickettsial septicemia is an emergent and geographically widespread disease of marine-farmed salmonids caused by infection with the water-borne bacterium Piscirickettsia salmonis. Very little is known about the route, timing, or magnitude of bacterial shedding from infected fish. METHODOLOGY/PRINCIPAL FINDINGS: A cohabitation challenge model was used to assess shedding from chum Oncorhynchus keta, pink O. gorbuscha and Atlantic salmon Salmo salar. Infections in donor fish were established by intraperitoneal injection of P. salmonis. Naïve recipients were cohabitated with donor fish after which cumulative percent morbidity and mortality (CMM) was monitored, and bacterial burdens in kidney and in tank water were measured by qPCR. All donor fish died with mean days-to-death (MDD) among species ranging from 17.5 to 23.9. Among recipients, CMM ranged from 42.7% to 77.8% and MDD ranged from 49.7 to 56.4. In each trial, two peaks of bacterial DNA concentrations in tank water closely aligned with the MDD values of donor and recipient fish. Bacterial tissue burden and shedding rate, and plasma physiological parameters were obtained from individual donors and recipients. Statistically significant positive correlations between the shedding rate and P. salmonis kidney burden were measured in donor pink and in donor and recipient chum salmon, but not in donor or recipient Atlantic salmon. In Atlantic salmon, there was a negative correlation between kidney bacterial burden and hematocrit, plasma Ca++ and Mg++ values, whereas in infected chum salmon the correlation was positive for Na+ and Cl- and negative for glucose. CONCLUSIONS: A dependency of bacterial shedding on species-specific patterns of pathogenesis was suggested. The coincidence of bacterial shedding with mortality will inform pathogen transmission models.


Assuntos
Derrame de Bactérias , Doenças dos Peixes/metabolismo , Oncorhynchus keta/metabolismo , Piscirickettsia/metabolismo , Infecções por Piscirickettsiaceae/metabolismo , Salmo salar/metabolismo , Salmão/metabolismo , Animais , Doenças dos Peixes/microbiologia , Oncorhynchus keta/microbiologia , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/veterinária , Salmo salar/microbiologia , Salmão/microbiologia , Especificidade da Espécie
18.
Food Microbiol ; 95: 103705, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397623

RESUMO

Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and ß diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. ß-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. ß-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, ß-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Produtos Pesqueiros/microbiologia , Técnicas Genéticas , Microbiota , RNA Ribossômico 16S/isolamento & purificação , Salmão/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Manipulação de Alimentos/instrumentação , RNA Ribossômico 16S/genética
19.
J Sci Food Agric ; 101(1): 315-326, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627837

RESUMO

BACKGROUND: Fish consumption is increasing nowadays both because of its positive role for health due to the abundant presence of unsaturated fatty acids and for its use in many new food preparations (e.g. raw fillet used for uncooked sushi and sashimi dishes). The growing food industry and increased demand for the long-term storage and preservation of food have created the need to develop methods that can easily track and preserve food freshness and safety throughout shelf-life (production, storage, shipment, and consumption). While E-nose technologies have already been used and tested for these purposes, scarce information is available in the literature on the feasibility of using other food devices to detect changes in perishable food like fish during shelf-life in order to predict and correctly manage all food storage phases. The aim of the present study was to investigate the potential of Food Sniffer® portable devices to define the quality and safety of salmon fillet and burger (Salmo salar) packaged in modified atmosphere at two refrigerated conditions (4 and 8 °C). RESULTS: An increase in biogenic amines and volatile compounds especially ketones and alcohols were observed, with large amounts at final storage times of 8 °C temperature. CONCLUSION: The Food Sniffer® application was able to anticipate unacceptability conditions of salmon samples also correlated with chemical and microbiological parameters. This could represent a valid support for food industry and retail to manage perishable food commodities preventing possible food risk as well. © 2020 Society of Chemical Industry.


Assuntos
Análise de Alimentos/métodos , Alimentos Marinhos/análise , Animais , Bactérias/crescimento & desenvolvimento , Aminas Biogênicas/análise , Análise de Alimentos/instrumentação , Embalagem de Alimentos , Inocuidade dos Alimentos , Armazenamento de Alimentos , Controle de Qualidade , Salmão/microbiologia , Alimentos Marinhos/microbiologia
20.
Front Immunol ; 11: 544718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281810

RESUMO

Piscirickettsia salmonis, an aggressive intracellular pathogen, is the etiological agent of salmonid rickettsial septicemia (SRS). This is a chronic multisystemic disease that generates high mortalities and large losses in Chilean salmon farming, threatening the sustainability of the salmon industry. Previous reports suggest that P. salmonis is able to survive and replicate in salmonid macrophages, inducing an anti-inflammatory environment and a limited lysosomal response that may be associated with host immune evasion mechanisms favoring bacterial survival. Current control and prophylaxis strategies against P. salmonis (based on the use of antibiotics and vaccines) have not had the expected success against infection. This makes it urgent to unravel the host-pathogen interaction to develop more effective therapeutic strategies. In this study, we evaluated the effect of treatment with IgM-beads on lysosomal activity in Atlantic salmon macrophage-enriched cell cultures infected with P. salmonis by analyzing the lysosomal pH and proteolytic ability through confocal microscopy. The impact of IgM-beads on cytotoxicity induced by P. salmonis in infected cells was evaluated by quantification of cell lysis through release of Lactate Dehydrogenase (LDH) activity. Bacterial load was determined by quantification of 16S rDNA copy number by qPCR, and counting of colony-forming units (CFU) present in the extracellular and intracellular environment. Our results suggest that stimulation with antibodies promotes lysosomal activity by lowering lysosomal pH and increasing the proteolytic activity within this organelle. Additionally, incubation with IgM-beads elicits a decrease in bacterial-induced cytotoxicity in infected Atlantic salmon macrophages and reduces the bacterial load. Overall, our results suggest that stimulation of cells infected by P. salmonis with IgM-beads reverses the modulation of the lysosomal activity induced by bacterial infection, promoting macrophage survival and bacterial elimination. This work represents a new important evidence to understand the bacterial evasion mechanisms established by P. salmonis and contribute to the development of new effective therapeutic strategies against SRS.


Assuntos
Anticorpos Antibacterianos/imunologia , Doenças dos Peixes/imunologia , Lisossomos/imunologia , Macrófagos/imunologia , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae/imunologia , Salmão/imunologia , Animais , Doenças dos Peixes/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Infecções por Piscirickettsiaceae/veterinária , Salmão/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...