Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 43(5): 829-840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388738

RESUMO

PURPOSE: The detection rate of Salmonella enterica serovar 1,4,[5], 12: i: - (S. 1,4,[5], 12: i: -) has increased as the most common serotype globally. A S. 1,4,[5], 12: i: - strain named ST3606 (sequence type 34), isolated from a fecal specimen of a child with acute diarrhea hospitalized in a tertiary hospital in China, was firstly reported to be resistant to carbapenem and ceftazidime-avibactam. The aim of this study was to characterize the whole-genome sequence of S. 1,4,[5], 12: i: - isolate, ST3606, and explore its antibiotic resistance genes and their genetic environments. METHODS: The genomic DNA of S. 1,4,[5], 12: i: - ST3606 was extracted and performed with single-molecule real-time sequencing. Resistance genes, plasmid replicon type, mobile elements, and multilocus sequence types (STs) of ST3606 were identified by ResFinder 3.2, PlasmidFinder, OriTfinder database, ISfinder database, and MLST 2.0, respectively. The conjugation experiment was utilized to evaluate the conjugation frequency of pST3606-2. Protein expression and enzyme kinetics experiments of CTX-M were performed to analyze hydrolytic activity of a novel CTX-M-261 enzyme toward several antibiotics. RESULTS: Single-molecule real-time sequencing revealed the coexistence of a 109-kb IncI1-Iα plasmid pST3606-1 and a 70.5-kb IncFII plasmid pST3606-2. The isolate carried resistance genes, including blaNDM-5, sul1, qacE, aadA2, and dfrA12 in pST3606-1, blaTEM-1B, aac(3)-lld, and blaCTX-M-261, a novel blaCTX-M-1 family member, in pST3606-2, and aac(6')-Iaa in chromosome. The blaCTX-M-261 was derived from blaCTX-M-55 by a single-nucleotide mutation 751G>A leading to amino acid substitution of Val for Met at position 251 (Val251Met), which conferred CTX-M increasing resistance to ceftazidime verified by antibiotics susceptibility testing of transconjugants carrying pST3606-2 and steady-state kinetic parameters of CTX-M-261. pST3606-1 is an IncI1-α incompatibility type that shares homology with plasmids of pC-F-164_A-OXA140, pE-T654-NDM-5, p_dm760b_NDM-5, and p_dmcr749c_NDM-5. The conjugation experiment demonstrated that pST3606-2 was successfully transferred to the Escherichia coli recipient C600 with four modules of OriTfinder. CONCLUSION: Plasmid-mediated horizontal transfer plays an important role in blaNDM-5 and blaCTX-M-261 dissemination, which increases the threat to public health due to the resistance to most ß-lactam antibiotics. This is the first report of blaCTX-M-261 and blaNDM-5 in S. 1,4,[5], 12: i: -. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of CTX-M enzymes and confirms urgency to control resistance of S. 1,4,[5], 12: i: -.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Infecções por Salmonella , Salmonella enterica , beta-Lactamases , Ceftazidima/farmacologia , Humanos , China , beta-Lactamases/genética , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Salmonella enterica/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/enzimologia , Infecções por Salmonella/microbiologia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla/genética , Sorogrupo , Plasmídeos/genética , Fezes/microbiologia , Genoma Bacteriano
2.
J Biol Chem ; 300(2): 105636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199572

RESUMO

The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.


Assuntos
Salmonella enterica , Endonucleases , Endorribonucleases/metabolismo , Guanina , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Uracila
3.
Front Immunol ; 12: 757909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804044

RESUMO

Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.


Assuntos
Carga Bacteriana , Proteínas de Bactérias/fisiologia , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salmonella enterica/fisiologia , Animais , Apoptose , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Citosol/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Piroptose , Salmonelose Animal/microbiologia , Salmonella enterica/enzimologia , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Suínos , Doenças dos Suínos/microbiologia , Vacúolos/microbiologia
4.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351398

RESUMO

Mevalonate is a key precursor in isoprenoid biosynthesis and a promising commodity chemical. Although mevalonate is a native metabolite in Saccharomyces cerevisiae, its production is challenged by the relatively low flux toward acetyl-CoA in this yeast. In this study we explore different approaches to increase acetyl-CoA supply in S. cerevisiae to boost mevalonate production. Stable integration of a feedback-insensitive acetyl-CoA synthetase (Se-acsL641P) from Salmonella enterica and the mevalonate pathway from Enterococcus faecalis results in the production of 1,390 ± 10 mg/l of mevalonate from glucose. While bifid shunt enzymes failed to improve titers in high-producing strains, inhibition of squalene synthase (ERG9) results in a significant enhancement. Finally, increasing coenzyme A (CoA) biosynthesis by overexpression of pantothenate kinase (CAB1) and pantothenate supplementation further increased production to 3,830 ± 120 mg/l. Using strains that combine these strategies in lab-scale bioreactors results in the production of 13.3 ± 0.5 g/l, which is ∼360-fold higher than previously reported mevalonate titers in yeast. This study demonstrates the feasibility of engineering S. cerevisiae for high-level mevalonate production.


Assuntos
Ácido Mevalônico , Saccharomyces cerevisiae , Acetato-CoA Ligase , Acetilcoenzima A , Enterococcus faecalis/enzimologia , Engenharia Metabólica , Ácido Mevalônico/metabolismo , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimologia
5.
mBio ; 12(2)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849975

RESUMO

Methylation of cytosine in DNA at position C5 increases the rate of C→T mutations in bacteria and eukaryotes. Methylation at the N4 position, employed by some restriction-modification systems, is not known to increase the mutation rate. Here, I report that a Salmonella enterica Type III restriction-modification system that includes a cytosine-N4 methyltransferase causes an enormous increase in the rate of mutation of the methylated cytosines, which occur at the overlined C in the motif CACC̅GT Mutations consist mainly of C→A transversions, the rate of which is increased ∼500-fold by the restriction-modification system. The rate of C→T transitions is also increased and somewhat exceeds that at C5-methylated cytosines in Dcm sites. Two other Salmonella N4 methyltransferases investigated do not have such dramatic effects, although in one case there is a modest increase in C→A mutations along with an increase in C→T mutations. The sensitivity of the C→A rate to orientation with respect to both DNA replication and transcription is higher at hypermutable sites than at other cytosines, suggesting a fundamental mechanistic difference between hypermutation and ordinary mutation.IMPORTANCE Mutation produces the raw material for adaptive evolution but also imposes a burden because most mutations are deleterious. The rate of mutation at a particular site is affected by a variety of factors. In both prokaryotes and eukaryotes, methylation of C at the C5 position, a naturally occurring DNA modification, greatly increases the rate of C→T mutation. A distinct C modification that occurs in prokaryotes, methylation at N4, is not known to increase mutation rate. Here, I report that a bacterial restriction-modification system, found in some Salmonella bacteria, increases the rate of C→A mutation by a factor of 500 at sites that it methylates at N4. This rate increase is much greater than that caused by C5 methylation. Although fewer than 1 in 1,600 positions analyzed are methylation sites, over 10% of all mutations occur at these sites. Like other examples of extremely high mutation rate, whether naturally occurring or the result of laboratory mutation, this phenomenon may shed light on the mechanism of mutation in general.


Assuntos
Citosina/metabolismo , Metilação de DNA , Metiltransferases/metabolismo , Mutação , Salmonella enterica/genética , Sequência de Bases , Salmonella enterica/enzimologia , Salmonella enterica/metabolismo , Especificidade por Substrato
6.
J Biol Chem ; 296: 100651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839153

RESUMO

The Rid protein family (PF14588, IPR006175) is divided into nine subfamilies, of which only the RidA subfamily has been characterized biochemically. RutC, the founding member of one subfamily, is encoded in the pyrimidine utilization (rut) operon that encodes a pathway that allows Escherichia coli to use uracil as a sole nitrogen source. Results reported herein demonstrate that RutC has 3-aminoacrylate deaminase activity and facilitates one of the reactions previously presumed to occur spontaneously in vivo. RutC was active with several enamine-imine substrates, showing similarities and differences in substrate specificity with the canonical member of the Rid superfamily, Salmonella enterica RidA. Under standard laboratory conditions, a Rut pathway lacking RutC generates sufficient nitrogen from uracil for growth of E. coli. These results support a revised model of the Rut pathway and provide evidence that Rid proteins may modulate metabolic fitness, rather than catalyzing essential functions.


Assuntos
Acrilatos/metabolismo , Aminoidrolases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Aminoidrolases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Nitrogênio/metabolismo , Oxirredutases/genética , Fosfato de Piridoxal/metabolismo , Salmonella enterica/enzimologia , Especificidade por Substrato , Uracila/metabolismo
7.
Antioxid Redox Signal ; 35(1): 21-39, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607928

RESUMO

Aims: Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential. Conventionally, Dsb proteins have specific redox functions with monomeric and dimeric Dsbs exclusively catalyzing thiol oxidation and disulfide isomerization, respectively. This contrasts with the eukaryotic disulfide forming machinery where the modular TRX protein disulfide isomerase (PDI) mediates thiol oxidation and disulfide reshuffling. In this study, we identified and structurally and biochemically characterized a novel Dsb-like protein from Salmonella enterica termed bovine colonization factor protein H (BcfH) and defined its role in virulence. Results: In the conserved bovine colonization factor (bcf) fimbrial operon, the Dsb-like enzyme BcfH forms a trimeric structure, exceptionally uncommon among the large and evolutionary conserved TRX superfamily. This protein also displays very unusual catalytic redox centers, including an unwound α-helix holding the redox active site and a trans-proline instead of the conserved cis-proline active site loop. Remarkably, BcfH displays both thiol oxidase and disulfide isomerase activities contributing to Salmonella fimbrial biogenesis. Innovation and Conclusion: Typically, oligomerization of bacterial Dsb proteins modulates their redox function, with monomeric and dimeric Dsbs mediating thiol oxidation and disulfide isomerization, respectively. This study demonstrates a further structural and functional malleability in the TRX-fold protein family. BcfH trimeric architecture and unconventional catalytic sites permit multiple redox functions emulating in bacteria the eukaryotic PDI dual oxidoreductase activity. Antioxid. Redox Signal. 35, 21-39.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Salmonella enterica/patogenicidade , Proteínas de Bactérias/ultraestrutura , Óperon/genética , Oxirredução , Estresse Oxidativo/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/ultraestrutura , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Dobramento de Proteína , Estrutura Terciária de Proteína , Salmonella enterica/enzimologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Tiorredoxinas/metabolismo
8.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218995

RESUMO

Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6, essential for cellular function in all domains of life. In many organisms, such as Salmonella enterica serovar Typhimurium and Escherichia coli, this cofactor can be synthesized de novo or salvaged from B6 vitamers in the environment. Unexpectedly, S. enterica strains blocked in PLP biosynthesis were able to use exogenous PLP and pyridoxine 5'-phosphate (PNP) as the source of this required cofactor, while E. coli strains of the same genotype could not. Transposon mutagenesis found that phoN was essential for the salvage of PLP and PNP under the conditions tested. phoN encodes a class A nonspecific acid phosphatase (EC 3.1.3.2) that is transcriptionally regulated by the PhoPQ two-component system. The periplasmic location of PhoN was essential for PLP and PNP salvage, and in vitro assays confirmed PhoN has phosphatase activity with PLP and PNP as substrates. The data suggest that PhoN dephosphorylates B6 vitamers, after which they enter the cytoplasm and are phosphorylated by kinases of the canonical PLP salvage pathway. The connection of phoN with PhoPQ and the broad specificity of the gene product suggest S. enterica is exploiting a moonlighting activity of PhoN for PLP salvage.IMPORTANCE Nutrient salvage is a strategy used by species across domains of life to conserve energy. Many organisms are unable to synthesize all required metabolites de novo and must rely exclusively on salvage. Others supplement de novo synthesis with the ability to salvage. This study identified an unexpected mechanism present in S. enterica that allows salvage of phosphorylated B6 vitamers. In vivo and in vitro data herein determined that the periplasmic phosphatase PhoN can facilitate the salvage of PLP and PNP. We suggest a mechanistic working model of PhoN-dependent utilization of PLP and PNP and discuss the general role of promiscuous phosphatases and kinases in organismal fitness.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/análogos & derivados , Salmonella enterica/enzimologia , Escherichia coli/genética , Fosfato de Piridoxal/metabolismo , Salmonella enterica/genética
9.
Eur J Med Chem ; 207: 112848, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980741

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are an attractive class of antibacterial drug targets due to their essential roles in protein translation. While most traditional aaRS inhibitors target the binding pockets of substrate amino acids and/or ATP, we recently developed a class of novel tRNA-amino acid dual-site inhibitors including inhibitor 3 ((2S,3R)-2-amino-N-((E)-4-(6,7-dichloro-4-oxoquinazolin-3(4H)-yl)but-2-en-1-yl)-3-hydroxybutanamide) against threonyl-tRNA synthetase (ThrRS). Here, the binding modes and structure-activity relationships (SARs) of these inhibitors were analyzed by the crystal structures of Salmonella enterica ThrRS (SeThrRS) in complex with three of them. Based on the cocrystal structures, twelve quinazolinone-threonine hybrids were designed and synthesized, and their affinities, enzymatic inhibitory activities, and cellular potencies were evaluated. The best derivative 8g achieved a Kd value of 0.40 µM, an IC50 value of 0.50 µM against SeThrRS and MIC values of 16-32 µg/mL against the tested bacterial strains. The cocrystal structure of the SeThrRS-8g complex revealed that 8g induced a bended conformation for Met332 by forming hydrophobic interactions, which better mimicked the binding of tRNAThr to ThrRS. Moreover, the inhibitory potency of 8g was less impaired than a reported ATP competitive inhibitor at high concentrations of ATP, supporting our hypothesis that tRNA site inhibitors are likely superior to ATP site inhibitors in vivo, where ATP typically reaches millimolar concentrations.


Assuntos
Desenho de Fármacos , Quinazolinonas/química , Salmonella enterica/enzimologia , Treonina-tRNA Ligase/antagonistas & inibidores , Treonina/química , Treonina/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Ligação Competitiva , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Salmonella enterica/efeitos dos fármacos , Relação Estrutura-Atividade , Treonina-tRNA Ligase/metabolismo
10.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843546

RESUMO

Membrane bound acyltransferase-3 (AT3) domain-containing proteins are implicated in a wide range of carbohydrate O-acyl modifications, but their mechanism of action is largely unknown. O-antigen acetylation by AT3 domain-containing acetyltransferases of Salmonella spp. can generate a specific immune response upon infection and can influence bacteriophage interactions. This study integrates in situ and in vitro functional analyses of two of these proteins, OafA and OafB (formerly F2GtrC), which display an "AT3-SGNH fused" domain architecture, where an integral membrane AT3 domain is fused to an extracytoplasmic SGNH domain. An in silico-inspired mutagenesis approach of the AT3 domain identified seven residues which are fundamental for the mechanism of action of OafA, with a particularly conserved motif in TMH1 indicating a potential acyl donor interaction site. Genetic and in vitro evidence demonstrate that the SGNH domain is both necessary and sufficient for lipopolysaccharide acetylation. The structure of the periplasmic SGNH domain of OafB identified features not previously reported for SGNH proteins. In particular, the periplasmic portion of the interdomain linking region is structured. Significantly, this region constrains acceptor substrate specificity, apparently by limiting access to the active site. Coevolution analysis of the two domains suggests possible interdomain interactions. Combining these data, we propose a refined model of the AT3-SGNH proteins, with structurally constrained orientations of the two domains. These findings enhance our understanding of how cells can transfer acyl groups from the cytoplasm to specific extracellular carbohydrates.IMPORTANCE Acyltransferase-3 (AT3) domain-containing membrane proteins are involved in O-acetylation of a diverse range of carbohydrates across all domains of life. In bacteria they are essential in processes including symbiosis, resistance to antimicrobials, and biosynthesis of antibiotics. Their mechanism of action, however, is poorly characterized. We analyzed two acetyltransferases as models for this important family of membrane proteins, which modify carbohydrates on the surface of the pathogen Salmonella enterica, affecting immunogenicity, virulence, and bacteriophage resistance. We show that when these AT3 domains are fused to a periplasmic partner domain, both domains are required for substrate acetylation. The data show conserved elements in the AT3 domain and unique structural features of the periplasmic domain. Our data provide a working model to probe the mechanism and function of the diverse and important members of the widespread AT3 protein family, which are required for biologically significant modifications of cell-surface carbohydrates.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Salmonella enterica/enzimologia , Acetilação , Aciltransferases/genética , Proteínas de Bactérias/genética , Simulação por Computador , Modelos Moleculares , Salmonella enterica/genética , Especificidade por Substrato , Virulência
11.
FEMS Microbiol Lett ; 367(15)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756977

RESUMO

The emergence of plasmid-mediated colistin resistance genes (mcr), which is occurring in numerous countries, is a worldwide concern, primarily because colistin is a last-resort antibiotic. Compared to E. coli, prevalence of mcr genes in Salmonella is unclear in Japan. Here we screened for mcr-1-5 genes in our collection of Salmonella strains isolated from retail meat products collected in Japan from 2012 through 2016. We found that Salmonella Albany strain 27A-368 encodes mcr-5 and that mcr genes were undetectable among the remaining 202 isolates. The resistance plasmid p27A-368 was transferred by conjugation to S. Infantis and was stably retained as a transconjugant. Whole-genome sequencing revealed that mcr-5 resided on a 115 kb plasmid (p27A-368). The plasmid backbone of p27A-368 is more similar to that of pCOV27, an ESBL-encoding plasmid recovered from avian pathogenic E. coli, rather than pSE13-SA01718 of S. Paratyphi B that encodes mcr-5. Further, mcr-5 is located on a transposon, and its sequence is similar to that of pSE13-SA01718. A phylogenetic tree based on single nucleotide variants implies a relationship between 27A-368 and S. Albany isolated in Southeast Asian countries.


Assuntos
Microbiologia de Alimentos , Carne/microbiologia , Plasmídeos/genética , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Animais , Galinhas , Japão , Salmonella enterica/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
12.
Microbiol Mol Biol Rev ; 84(3)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32669283

RESUMO

The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.


Assuntos
Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Salmonella enterica/enzimologia , Estresse Fisiológico , Alanina/análogos & derivados , Alanina/metabolismo , Aminoácidos/metabolismo , Aminoidrolases/química , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Eucariotos/enzimologia , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Aromáticos/metabolismo , Iminas/metabolismo , Redes e Vias Metabólicas , Salmonella enterica/genética , Especificidade por Substrato , Uracila/metabolismo
13.
Genes (Basel) ; 11(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679707

RESUMO

Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract-for example, during inflammation.


Assuntos
Bacteriocinas/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Succinatos/metabolismo , Animais , Bacteriocinas/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Intestinos/microbiologia , Isocitrato Liase/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Salmonella enterica/enzimologia , Salmonella enterica/imunologia , Succinatos/imunologia , Yersinia pestis/enzimologia
14.
Proc Natl Acad Sci U S A ; 117(27): 15895-15901, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571932

RESUMO

In eukaryotic cells, the N-terminal amino moiety of many proteins is modified by N-acetyltransferases (NATs). This protein modification can alter the folding of the target protein; can affect binding interactions of the target protein with substrates, allosteric effectors, or other proteins; or can trigger protein degradation. In prokaryotes, only ribosomal proteins are known to be N-terminally acetylated, and the acetyltransferases responsible for this modification belong to the Rim family of proteins. Here, we report that, in Salmonella enterica, the sirtuin deacylase CobB long isoform (CobBL) is N-terminally acetylated by the YiaC protein of this bacterium. Results of in vitro acetylation assays showed that CobBL was acetylated by YiaC; liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to confirm these results. Results of in vitro and in vivo experiments showed that CobBL deacetylase activity was negatively affected when YiaC acetylated its N terminus. We report 1) modulation of a bacterial sirtuin deacylase activity by acetylation, 2) that the Gcn5-related YiaC protein is the acetyltransferase that modifies CobBL, and 3) that YiaC is an NAT. Based on our data, we propose the name of NatA (N-acyltransferase A) in lieu of YiaC to reflect the function of the enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Salmonella enterica/metabolismo , Sirtuínas/metabolismo , Acetilação , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Isoformas de Proteínas , Salmonella enterica/enzimologia , Espectrometria de Massas em Tandem
15.
Int J Food Microbiol ; 322: 108572, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32169770

RESUMO

Global dissemination of non-typhoidal Salmonella producing extended-spectrum ß-lactamase (ESBL) is a public-health concern. Recently, the prevalence of Salmonella spp. resistant to third-generation cephalosporins has been increasing in food-producing animals in Korea. In this study, we investigated resistance mechanisms and molecular characteristics of S. Virchow isolates resistant to extended-spectrum cephalosporins (ESCs). We obtained 265 S. Virchow isolates from fecal and carcasses samples of cattle (n = 2), pigs (n = 7), and chickens (n = 256) during 2010-2017, and observed high ESC-resistance (63.8%, 169/265); most of the resistant isolates (96.4%) were obtained from chickens. ESC-resistant S. Virchow isolates (n = 169) showed significantly higher resistance rates to other antimicrobials (especially aminoglycosides and tetracycline, p-value <0.0001), as well as prevalence of multidrug resistance, than did ESC-susceptible S. Virchow isolates (n = 96). All ESC-resistant S. Virchow produced CTX-M-15-type ESBL (n = 147) and/or CMY-2-type AmpC ß-lactamase (n = 23). ESC-resistant S. Virchow represented seven pulsotypes, predominantly composed of type II (58.6%) and III (26.0%), detected in 69 farms in 10 provinces, and 33 farms in 7 provinces, respectively. Genes encoding ESC-resistance were horizontally transferred by conjugation to recipient E. coli J53; this was demonstrated in 28.8% (42/146) of blaCTX-M-15-positive isolates and in 50.0% (11/22) of blaCMY-2-positive isolates. All conjugative plasmids carrying blaCTX-M-15 and blaCMY-2 genes belonged to ST2-IncHI2 and ST12/CC12-IncI1, respectively. Genetic features of transferred bla genes were involved with ISEcp1 in both blaCTX-M-15 and blaCMY-2; ISEcp1 plays a critical role in the efficient capture, expression, and mobilization of bla genes. In addition to blaCTX-M-15 genes, resistance markers to aminoglycosides and/or tetracycline were co-transferred to recipient E. coli J53. Our results show a high prevalence of ESBL-producing S. Virchow in chickens and chicken carcasses. Specific blaCTX-M-15 and blaCMY-2-carrying S. Virchow clones and plasmids were predominant in food-producing animals nationwide. Restriction of antimicrobial use and proper biosecurity practices at the farm level should be urgently implemented in the poultry industry.


Assuntos
Microbiologia de Alimentos , Salmonella enterica/enzimologia , Salmonella enterica/isolamento & purificação , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias , Bovinos/microbiologia , Cefalosporinas/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Aves Domésticas/microbiologia , República da Coreia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo , Suínos/microbiologia , beta-Lactamases/metabolismo
16.
Eur J Med Chem ; 187: 111941, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821989

RESUMO

Threonyl-tRNA synthetase (ThrRS) is a key member of the aminoacyl-tRNA synthetase (aaRS) family that plays essential roles in protein biosynthesis, and ThrRS inhibitors have potential in the therapy of multiple diseases, such as microbial infections and cancers. Based on a unique tRNA-amino acid dual-site inhibitory mechanism identified recently with the herb-derived prolyl-tRNA synthetase (ProRS) inhibitor halofuginone (HF), a series of compounds have been designed and synthesized by employing a fragment-based target hopping approach to simultaneously target the tRNAThr and l-threonine binding pockets of ThrRS. Among them, compound 30d showed an IC50 value of 1.4 µM against Salmonella enterica ThrRS (SeThrRS) and MIC values of 16-32 µg/mL against the tested bacterial strains. The cocrystal structure of SeThrRS in complex with 30d was determined at high resolution, revealing that 30d simultaneously occupies both binding pockets for the nucleotide A76 of tRNAThr and l-threonine in an ATP-independent manner, a novel mechanism compared to all other reported ThrRS inhibitors. Our study provides a new class of ThrRS inhibitors, and more importantly, it presents the first experimental evidence that the tRNA-amino acid dual-site inhibitory mechanism could apply to other aaRSs beyond ProRS, thus providing great opportunities for designing new mechanistic inhibitors for aaRS-based therapeutics.


Assuntos
Descoberta de Drogas , RNA de Transferência Aminoácido-Específico/farmacologia , Treonina-tRNA Ligase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , RNA de Transferência Aminoácido-Específico/síntese química , RNA de Transferência Aminoácido-Específico/química , Salmonella enterica/enzimologia , Relação Estrutura-Atividade , Treonina-tRNA Ligase/metabolismo
17.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31792013

RESUMO

Bacterial lipopolysaccharides are major components and contributors to the integrity of Gram-negative outer membranes. The more conserved lipid A-core part of this complex glycolipid is synthesized separately from the hypervariable O-antigenic polysaccharide (OPS) part, and they are joined in the periplasm prior to translocation to the outer membrane. Three different biosynthesis strategies are recognized for OPS biosynthesis, and one, the synthase-dependent pathway, is currently confined to a single example: the O:54 antigen from Salmonella enterica serovar Borreze. Synthases are complex enzymes that have the capacity to both polymerize and export bacterial polysaccharides. Although synthases like cellulose synthase are widespread, they typically polymerize a glycan without employing a lipid-linked intermediate, unlike the O:54 synthase (WbbF), which produces an undecaprenol diphosphate-linked product. This raises questions about the overall similarity between WbbF and conventional synthases. In this study, we examine the topology of WbbF, revealing four membrane-spanning helices, compared to the eight in cellulose synthase. Molecular modeling of the glycosyltransferase domain of WbbF indicates a similar architecture, and site-directed mutagenesis confirmed that residues important for catalysis and processivity in cellulose synthase are conserved in WbbF and required for its activity. These findings indicate that the glycosyltransferase mechanism of WbbF and classic synthases are likely conserved despite the use of a lipid acceptor for chain extension by WbbF.IMPORTANCE Glycosyltransferases play a critical role in the synthesis of a wide variety of bacterial polysaccharides. These include O-antigenic polysaccharides, which form the distal component of lipopolysaccharides and provide a protective barrier important for survival and host-pathogen interactions. Synthases are a subset of glycosyltransferases capable of coupled synthesis and export of glycans. Currently, the O:54 antigen of Salmonella enterica serovar Borreze involves the only example of an O-polysaccharide synthase, and its generation of a lipid-linked product differentiates it from classical synthases. Here, we explore features conserved in the O:54 enzyme and classical synthases to shed light on the structure and function of the unusual O:54 enzyme.


Assuntos
Domínio Catalítico , Glicosiltransferases/química , Modelos Moleculares , Salmonella enterica/enzimologia , Sequência de Aminoácidos , Catálise , Antígenos O/biossíntese , Proteínas Recombinantes de Fusão , Salmonella enterica/imunologia
18.
Am J Trop Med Hyg ; 101(4): 746-748, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392950

RESUMO

Salmonella enterica serovar Infantis is causing an increasing number of infections worldwide. Our aim was to describe the characteristics of S. enterica serovar Infantis among patients attended in a hospital of Lima, Peru. Fifty cases of salmonellosis were seen during October 2015-May 2017; Salmonella Infantis was detected in 36% (n = 18) of them, displacing Enteritidis and Typhimurium (n = 13, 26%, each). Seventeen cases caused by Salmonella Infantis were presented as diarrheal illnesses; only one extraintestinal case (bacteremia) was seen in a 1-year-old infant. This serovar is resistant to multiple groups of antimicrobials, showing only fully susceptibility to carbapenems. Compared with Infantis, other serovars analyzed (mainly Enteritidis and Typhimurium) showed a lower frequency of resistance to antimicrobials such as trimethoprim-sulfamethoxazole, ampicillin, and chloramphenicol. The antibiotic with the highest frequency of resistance was ciprofloxacin. Further studies are needed to evaluate the routes of transmission and measures of control of this multidrug-resistant Salmonella.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/microbiologia , Infecções por Salmonella/microbiologia , Salmonella/imunologia , Adolescente , Bacteriemia/epidemiologia , Bacteriemia/transmissão , Carbapenêmicos/farmacologia , Criança , Pré-Escolar , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla , Hospitais , Humanos , Lactente , Testes de Sensibilidade Microbiana , Peru/epidemiologia , Salmonella/enzimologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/transmissão , Salmonella enterica/enzimologia , Salmonella enterica/imunologia , Sorogrupo
19.
Biochemistry ; 58(35): 3683-3690, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31419122

RESUMO

The first-order reaction kinetics of the cryotrapped 1,1,2,2-2H4-aminoethanol substrate radical intermediate state in the adenosylcobalamin (B12)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella enterica serovar Typhimurium are measured over the range of 203-225 K by using time-resolved, full-spectrum electron paramagnetic resonance spectroscopy. The studies target the fundamental understanding of the mechanism of EAL, the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. Incorporation of 2H into the hydrogen transfer that follows the substrate radical rearrangement step in the substrate radical decay reaction sequence leads to an observed 1H/2H isotope effect of approximately 2 that preserves, with high fidelity, the idiosyncratic piecewise pattern of rate constant versus inverse temperature dependence that was previously reported for the 1H-labeled substrate, including a monoexponential regime (T ≥ 220 K) and two distinct biexponential regimes (T = 203-219 K). In the global kinetic model, reaction at ≥220 K proceeds from the substrate radical macrostate, S•, and at 203-219 K along parallel pathways from the two sequential microstates, S1• and S2•, that are distinguished by different protein configurations. Decay from S•, or S1• and S2•, is rate-determined by radical rearrangement (1H) or by contributions from both radical rearrangement and hydrogen transfer (2H). Non-native direct decay to products from S1• is a consequence of the free energy barrier to the native S1• → S2• protein configurational transition. At physiological temperatures, this is averted by the fast protein configurational dynamics that guide the S1• → S2• transition.


Assuntos
Deutério/química , Etanolamina Amônia-Liase , Etanolaminas/química , Etanolaminas/metabolismo , Catálise/efeitos dos fármacos , Cobamidas/metabolismo , Cobamidas/farmacologia , Temperatura Baixa , Deutério/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Entropia , Etanolamina Amônia-Liase/química , Etanolamina Amônia-Liase/efeitos dos fármacos , Etanolamina Amônia-Liase/metabolismo , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Salmonella enterica/enzimologia , Salmonella typhimurium/enzimologia
20.
Genes Dev ; 33(17-18): 1280-1292, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371438

RESUMO

All cells use proteases to adjust protein amounts. Proteases maintain protein homeostasis by degrading nonfunctional toxic proteins and play regulatory roles by targeting particular substrates in response to specific signals. Here we address how cells tune protease specificity to nutritional signals. We report that Salmonella enterica increases the specificity of the broadly conserved proteases Lon and ClpSAP by transforming the Lon activator and substrate HspQ into an inhibitor of the N-degron recognin ClpS, the adaptor of the ClpAP protease. We establish that upon acetylation, HspQ stops being a Lon activator and substrate and that the accumulated HspQ binds to ClpS, hindering degradation of ClpSAP substrates. Growth on glucose promotes HspQ acetylation by increasing acetyl-CoA amounts, thereby linking metabolism to proteolysis. By altering protease specificities but continuing to degrade junk proteins, cells modify the abundance of particular proteins while preserving the quality of their proteomes. This rapid response mechanism linking protease specificity to nutritional signals is broadly conserved.


Assuntos
Proteínas de Bactérias/metabolismo , Fenômenos Fisiológicos da Nutrição , Salmonella enterica/enzimologia , Acetilação , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Glucose/metabolismo , Proteínas de Choque Térmico , Protease La/metabolismo , Ligação Proteica , Proteólise , Salmonella enterica/crescimento & desenvolvimento , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...