Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Viruses ; 14(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215879

RESUMO

Salmonella and Escherichia coli (E. coli) food contamination could lead to serious foodborne diseases. The gradual increase in the incidence of foodborne disease invokes new and efficient methods to limit food pathogenic microorganism contamination. In this study, a polyvalent broad-spectrum Escherichia phage named Tequatrovirus EP01 was isolated from pig farm sewage. It could lyse both Salmonella Enteritidis (S. Enteritidis) and E. coli and exhibited broad host range. EP01 possessed a short latent period (10 min), a large burst size (80 PFU/cell), and moderate pH stability (4-10) and appropriate thermal tolerance (30-80 °C). Electron microscopy and genome sequence revealed that EP01 belonged to T4-like viruses genus, Myoviridae family. EP01 harbored 12 CDSs associated with receptor-binding proteins and lacked virulence genes and drug resistance genes. We tested the inhibitory effect of EP01 on S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B) in liquid broth medium (LB). EP01 could significantly reduce the counts of all tested strains compared with phage-free groups. We further examined the effectiveness of EP01 in controlling bacterial contamination in two kinds of foods (meat and milk) contaminated with S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B), respectively. EP01 significantly reduced the viable counts of all the tested bacteria (2.18-6.55 log10 CFU/sample, p < 0.05). A significant reduction of 6.55 log10 CFU/cm2 (p < 0.001) in bacterial counts on the surface of meat was observed with EP01 treatment. Addition of EP01 at MOI of 1 decreased the counts of bacteria by 4.3 log10 CFU/mL (p < 0.001) in milk. Generally, the inhibitory effect exhibited more stable at 4 °C than that at 28 °C, whereas the opposite results were observed in milk. The antibacterial effects were better at MOI of 1 than that at MOI of 0.001. These results suggests that phage EP01-based method is a promising strategy of controlling Salmonella and Escherichia coli pathogens to limit microbial food contamination.


Assuntos
Escherichia coli/virologia , Contaminação de Alimentos/prevenção & controle , Myoviridae/fisiologia , Salmonella enteritidis/virologia , Animais , Bacteriólise , Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Genoma Viral , Especificidade de Hospedeiro , Carne/microbiologia , Leite/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Filogenia , Salmonella enteritidis/crescimento & desenvolvimento , Esgotos/virologia , Suínos
2.
Food Microbiol ; 102: 103898, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809930

RESUMO

Due to climate change, with contaminated and less fertile soils, and intense weather phenomena, a turn towards hydroponic vegetable production has been made. Hydroponic cultivation of vegetables is considered to be a clean, safe and environmentally friendly growing technique; however, incidence of microbial contamination i.e. foodborne pathogens, might occur, endangering human health. The aim of this study was to investigate the effects of different plant growth stages, pH (values 5, 6, 7, 8) and bacterial inoculum levels (3 and 6 log cfu/mL) on hydroponically cultivated lettuce spiked with Salmonella Enteritidis. The results revealed that the pH and inoculum levels affected the internalization and survival of the pathogen in the hydroponic environment and plant tissue. Younger plants were found to be more susceptible to pathogen internalization compared to older ones. Under the current growing conditions (hydroponics, pH and inoculum levels), no leaf internalization was observed at all lettuce growth stages, despite the bacterium presence in the hydroponic solution. Noticeably, bacteria load at the nutrient solution was lower in low pH levels. These results showed that bacterium presence initiates plant response as indicated by the increased phenols, antioxidants and damage index markers (H2O2, MDA) in order for the plant to resist contamination by the invader. Nutrient solution management can result in Taylor-made recipes for plant growth and possible controlling the survival and growth of S. Enteritidis by pH levels.


Assuntos
Microbiologia de Alimentos , Lactuca , Salmonella enteritidis , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Hidroponia , Lactuca/microbiologia , Viabilidade Microbiana , Nutrientes , Salmonella enteritidis/crescimento & desenvolvimento , Temperatura , Verduras/microbiologia
3.
Appl Environ Microbiol ; 87(24): e0168121, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613752

RESUMO

Florfenicol is an important antibiotic commonly used in poultry production to prevent and treat Salmonella infection. However, oral administration of florfenicol may alter the animals' natural microbiota and metabolome, thereby reducing intestinal colonization resistance and increasing susceptibility to Salmonella infection. In this study, we determined the effect of florfenicol (30 mg/kg of body weight) on gut colonization of neonatal chickens challenged with Salmonella enterica subsp. enterica serovar Enteritidis. We then analyzed the microbial community structure and metabolic profiles of cecal contents using microbial 16S amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics, respectively. We also screened the marker metabolites using a multi-omics technique and assessed the effect of these markers on intestinal colonization by S. Enteritidis. Florfenicol administration significantly increased the loads of S. Enteritidis in cecal contents, spleen, and liver and prolonged the residence of S. Enteritidis. Moreover, florfenicol significantly affected cecal colony structures, with reduced abundances of Lactobacillus and Bacteroidetes and increased levels of Clostridia, Clostridium, and Dorea. The metabolome was greatly influenced by florfenicol administration, and perturbation in metabolic pathways related to linoleic acid metabolism (linoleic acid, conjugated linoleic acid [CLA], 12,13-EpOME, and 12,13-diHOME) was most prominently detected. We screened CLA and 12,13-diHOME as marker metabolites, which were highly associated with Lactobacillus, Clostridium, and Dorea. Supplementation with CLA maintained intestinal integrity, reduced intestinal inflammation, and accelerated Salmonella clearance from the gut and remission of enteropathy, whereas treatment with 12,13-diHOME promoted intestinal inflammation and disrupted intestinal barrier function to sustain Salmonella infection. Thus, these results highlight that florfenicol alters the intestinal microbiota and metabolism of neonatal chickens and promotes Salmonella infection mainly by affecting linoleic acid metabolism. IMPORTANCE Florfenicol is a broad-spectrum fluorine derivative of chloramphenicol frequently used in poultry to prevent/treat Salmonella. However, oral administration of florfenicol may lead to alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to Salmonella infection, and the possible mechanisms linking antibiotics and Salmonella colonization in poultry have not yet been fully elucidated. In the current study, we show that increased colonization by S. Enteritidis in chickens administered florfenicol is associated with large shifts in the gut microbiota and metabolic profiles. The most influential linoleic acid metabolism is highly associated with the abundances of Lactobacillus, Clostridium, and Dorea in the intestine. The screened target metabolites in linoleic acid metabolism affect S. Enteritidis colonization, intestinal inflammation, and intestinal barrier function. Our findings provide a better understanding of the susceptibility of animal species to Salmonella after antibiotic intervention, which may help to elucidate infection mechanisms that are important for both animal and human health.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Salmonelose Animal/microbiologia , Salmonella enteritidis/efeitos dos fármacos , Tianfenicol/análogos & derivados , Animais , Animais Recém-Nascidos/microbiologia , Antibacterianos/farmacologia , Carga Bacteriana , Galinhas/microbiologia , Inflamação , Ácido Linoleico/metabolismo , Salmonella enteritidis/crescimento & desenvolvimento , Tianfenicol/efeitos adversos , Tianfenicol/farmacologia
4.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445643

RESUMO

The development and spread of antibiotics and biocides resistance is a significant global challenge. To find a solution for this emerging problem, the discovery of novel bacterial cellular targets and the critical pathways associated with antimicrobial resistance is needed. In the present study, we investigated the role of the two most critical envelope stress response regulators, RpoE and CpxR, on the physiology and susceptibility of growing Salmonella enterica serovar enteritidis cells using the polycationic antimicrobial agent, chlorhexidine (CHX). It was shown that deletion of the cpxR gene significantly increased the susceptibility of this organism, whereas deletion of the rpoE gene had no effect on the pathogen's susceptibility to this antiseptic. It has been shown that a lack of the CpxR regulator induces multifaceted stress responses not only in the envelope but also in the cytosol, further affecting the key biomolecules, including DNA, RNA, and proteins. We showed that alterations in cellular trafficking and most of the stress responses are associated with a dysfunctional CpxR regulator during exponential growth phase, indicating that these physiological changes are intrinsically associated with the lack of the CpxR regulator. In contrast, induction of type II toxin-antitoxin systems and decrease of abundances of enzymes and proteins associated with the recycling of muropeptides and resistance to polymixin and cationic antimicrobial peptides were specific responses of the ∆cpxR mutant to the CHX treatment. Overall, our study provides insight into the effects of CpxR on the physiology of S. Enteritidis cells during the exponential growth phase and CHX treatment, which may point to potential cellular targets for the development of an effective antimicrobial agent.


Assuntos
Anti-Infecciosos Locais/farmacologia , Proteínas de Bactérias/metabolismo , Clorexidina/farmacologia , Regulação Bacteriana da Expressão Gênica , Salmonella enteritidis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação , Proteoma/análise , Proteoma/metabolismo , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/metabolismo
5.
Food Microbiol ; 100: 103853, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416958

RESUMO

The combined effects of ethylenediaminetetraacetic acid (EDTA) and bacteriophage (phage) treatment of foodborne pathogens were investigated. Although viable counts for Campylobacter jejuni decreased by 1.5 log after incubation for 8 h in the presence of phage PC10, re-growth was observed thereafter. The combination of phage PC10 and 1 mM EDTA significantly inhibited the re-growth of C. jejuni. The viable counts for C. jejuni decreased by 2.6 log (P < 0.05) compared with that of the initial count after 24 h. Moreover, EDTA at 0.67 or 1.3 mM, combined with the specific lytic phages, also effectively inhibited the re-growth of phage-resistant cells of Campylobacter coli, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Typhimurium. In addition, the combined effects of lytic phages and EDTA were investigated on the viability of Campylobacter in BHI broth at low temperatures followed by the optimum growth temperature. The re-growth of C. coli was significantly inhibited by the coexistence of 1.3 mM EDTA, and the viable counts of surviving bacteria was about the same as the initial viable count after the incubation. This is the first study demonstrating the combined use of lytic phages and EDTA is effective in inhibiting the re-growth of phage-resistant bacteria in Gram-negative bacteria.


Assuntos
Bacteriófagos/fisiologia , Campylobacter coli/crescimento & desenvolvimento , Campylobacter jejuni/crescimento & desenvolvimento , Ácido Edético/farmacologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Campylobacter coli/efeitos dos fármacos , Campylobacter coli/virologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/virologia , Viabilidade Microbiana , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/virologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/virologia
6.
Food Microbiol ; 99: 103804, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119097

RESUMO

The effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties. Based on these findings, to evaluate the applicability of ApoB-derived peptides as food biopreservatives, coating solutions composed by chitosan (CH) and an ApoB-derived peptide have been prepared and found to be able to prevent Salmonella cells attachment to different kinds of surfaces employed in food industry. Finally, obtained coating solution has been demonstrated to hinder microbial proliferation in chicken meat samples. Altogether, obtained findings indicate that ApoB-derived peptides are promising candidates as novel biopreservatives for food packaging.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Apolipoproteínas B/química , Conservantes de Alimentos/farmacologia , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Galinhas , Embalagem de Alimentos , Conservação de Alimentos , Conservantes de Alimentos/química , Armazenamento de Alimentos , Carne/microbiologia , Testes de Sensibilidade Microbiana , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento
7.
Food Microbiol ; 99: 103819, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119104

RESUMO

Nuts, including almonds, are occasionally contaminated with Salmonella spp. In this study, we used chlorine dioxide (ClO2) gas to inactivate S. enterica subsp. Enterica serovar Enteritidis on almonds. Almonds inoculated with a single strain of S. Enteritidis (8.95 log cfu/mL) were exposed to ClO2 gas generated from 1.0 or 1.5 mL ClO2 solution in a sealed container at 50 or 60 °C (43% relative humidity) for up to 10 h. The concentration of ClO2 gas peaked at 354-510 and 750-786 ppm within 0.5 h upon deposition of 1.0 and 1.5 mL of aqueous ClO2, respectively, and gradually decreased thereafter. Population of S. Enteritidis on almonds treated at 50 °C decreased to 1.70-2.32 log cfu/sample within 1 h of exposure to ClO2 gas and decreased to below the detection limit (1.7 log cfu/sample) at all ClO2 concentrations after 8 h. At 60 °C, the microbial population fell below the detection limit within 1 h, regardless of the volume of ClO2 solution supplied. Microbial survival on almonds treated with ClO2 gas and stored at 12 or 25 °C was observed for up to 8 weeks and the organism was not recovered from the almonds treated for 10 h and stored at 12 °C for 2-8 weeks. The lightness (L value) and redness (a value) of almonds treated for 10 h were not changed by ClO2 gas treatment, but yellowness (b value) increased. Results showed that Salmonella on almonds was successfully inactivated by ClO2 gas treatment and the microbial survival did not occur during storage.


Assuntos
Compostos Clorados/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Óxidos/farmacologia , Prunus dulcis/microbiologia , Salmonella enteritidis/efeitos dos fármacos , Compostos Clorados/química , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Gases/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Nozes/microbiologia , Óxidos/química , Salmonella enteritidis/crescimento & desenvolvimento
8.
Microb Genom ; 7(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952386

RESUMO

An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.


Assuntos
Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Salmonella enteritidis/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Humanos , Camundongos , Filogenia , República da Coreia , Salmonella enteritidis/crescimento & desenvolvimento
9.
Sci Rep ; 11(1): 10910, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035347

RESUMO

Salmonella serotype (ser.) Enteritidis infection in broilers is a main foodborne illness that substantially threatens food security. This study aimed to examine the effects of a novel polysaccharide isolated from alfalfa (APS) on the intestinal microbiome and systemic health of S. ser. Enteritidis-infected broilers. The results indicated that broilers receiving the APS-supplemented diet had the improved (P < 0.05) growth performance and gut health than those fed no APS-supplemented diet. Supplementation with APS enhanced (P < 0.05) the richness of gut beneficial microbes such as Bacteroidetes, Barnesiella, Parabacteroides, Butyricimonas, and Prevotellaceae, while decreased (P < 0.05) the abundance of facultative anaerobic bacteria including Proteobacteria, Actinobacteria, Ruminococcaceae, Lachnospiraceae, and Burkholderiaceae in the S. ser. Enteritidis-infected broilers. The Bacteroides and Odoribacter were identified as the two core microbes across all treatments and combined with their syntrophic microbes formed the hub in co-occurrence networks linking microbiome structure to performance of broilers. Taken together, dietary APS supplementation improved the systemic health of broilers by reshaping the intestinal microbiome regardless of whether S. ser. Enteritidis infection was present. Therefore, APS can be employed as a potential functional additives to inhibit the S. ser. Enteritidis and enhance the food safety in poultry farming.


Assuntos
Bactérias/classificação , Galinhas/microbiologia , Medicago sativa/metabolismo , Polissacarídeos/administração & dosagem , Salmonelose Animal/dietoterapia , Salmonella enteritidis/crescimento & desenvolvimento , Ração Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Galinhas/imunologia , Citocinas/metabolismo , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polissacarídeos/farmacologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/efeitos dos fármacos , Análise de Sequência de DNA , Resultado do Tratamento
10.
PLoS One ; 16(4): e0250296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909627

RESUMO

Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.


Assuntos
Proteínas Aviárias/genética , Ácido Butírico/farmacologia , Interações Hospedeiro-Patógeno/genética , Macrófagos/efeitos dos fármacos , Doenças das Aves Domésticas/genética , Salmonelose Animal/genética , Actinina/genética , Actinina/metabolismo , Animais , Proteínas Aviárias/metabolismo , Galinhas , Citocromos c/genética , Citocromos c/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Anotação de Sequência Molecular , Fosforilação Oxidativa/efeitos dos fármacos , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/microbiologia , Cultura Primária de Células , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/patogenicidade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vimentina/genética , Vimentina/metabolismo , Vinculina/genética , Vinculina/metabolismo
11.
Lett Appl Microbiol ; 72(6): 741-749, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33650683

RESUMO

In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria-Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although E. coli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, E. coli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that E. coli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.


Assuntos
Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/crescimento & desenvolvimento , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Ágar , Contagem de Colônia Microbiana , Meios de Cultura/química , Microbiologia de Alimentos
12.
Microbiol Res ; 245: 126686, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33429286

RESUMO

Salmonella spp. can survive and replicate in macrophage cells to cause persistent infection, SpiC is a necessary T3SS effector, but its pathogenic mechanism is still not known completely. In our study, Salmonella Enteritidis spiC mutant (SEΔspiC) was found to have stronger swarming motility and intramacrophage hyperproliferation which was closely related to glucose metabolism. SEΔspiC wbaP::Tn5 mutant was screened out by transposon mutagenesis, which had weaker swarming motility and intramacrophage replication ability than SEΔspiC in the presence of glucose. Bioinformatics displayed that undecaprenyl-phosphate galactose phosphotransferase (Wbap), encoded by wbaP gene, was a key enzyme for glucose metabolism and Lipopolysaccharide(LPS) synthesis, which confirmed our outcome that Wbap was involved in intramacrophage replication ability by glucose use in addition to swarming motility based on SEΔspiC. This discovery will further promote the understanding of the interaction between wbaP gene and spiC gene and the intracellular Salmonella replication mechanism.


Assuntos
Proteínas de Bactérias/genética , Glucose/metabolismo , Macrófagos/microbiologia , Mutação , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/genética , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Movimento , Mutagênese , Células RAW 264.7 , Salmonella enteritidis/metabolismo
13.
Biotechnol Lett ; 43(4): 919-932, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502659

RESUMO

OBJECTIVES: To identify proteins that may be associated with antibiotic resistance in the multidrug-resistant Salmonella enterica D14, by constructing proteomic profiles using mass spectrometry-based label-free quantitative proteomics (LFQP). RESULTS: D14 was cultured with four antibiotics (ampicillin, nalidixic acid, streptomycin, and tetracycline) separately. Subsequently, the findings from an equal combination of the four cultures were compared with the profile of sensitive S. enterica 104. 2255 proteins, including 149 differentially up-regulated proteins, were identified. Many of these up-regulated proteins were associated with flagellar assembly and chemotaxis, two-component system, amino acid metabolism, ß-lactam resistance, and transmembrane transport. A subset of 10 genes was evaluated via quantitative real-time PCR (qPCR), followed by the construction of cheR, fliS, fliA, arnA, and yggT deletion mutants. Only the yggT-deleted D14 mutant showed decrease in streptomycin resistance, whereas the other deletions had no effect. Furthermore, complementation of yggT and the overexpression of yggT in S. enterica ATCC 14028 increased the streptomycin resistance. Additionally, spot dilution assay results confirmed that Salmonella strains, harboring yggT, exhibited an advantage in the presence of streptomycin. CONCLUSIONS: The above proteomic and mutagenic analyses revealed that yggT is involved in streptomycin resistance in S. enterica.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteômica/métodos , Salmonella enteritidis/crescimento & desenvolvimento , Estreptomicina/farmacologia , Proteínas de Bactérias/genética , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Espectrometria de Massas em Tandem
14.
Can J Microbiol ; 67(3): 259-270, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32956591

RESUMO

Ultrasound (US) combined with chemical agents could represent an effective method for decontaminating fruits and vegetables. This study aimed to evaluate the use of US (40 kHz for 5 min) alone or with 1% lactic acid (LA), 1% commercial detergent (DET), or 6 mg/L silver nanoparticles (AgNP, average diameter 100 nm) as an alternative treatment to 200 mg/L sodium dichloroisocyanurate for inactivating Salmonella enterica serovar Enteritidis present on cherry tomatoes. The interfacial tension between sanitizing solutions and bacterial adhesion was investigated. Sanitizers in solutions with DET and AgNP had lower surface tension. All treatments, except that with DET, reduced Salmonella Enteritidis by more than one logarithmic cycle. There was no significant difference between the mean values of log colony-forming units (CFU)/g reduction in all treatments. Transmission electron microscopy revealed the loss of the Salmonella Enteritidis capsule following treatment with US and with US + LA. Salmonella Enteritidis counts (2.29 log CFU/g) in cherry tomatoes were markedly reduced to safe levels by treatment with the combination of AgNP and US + LA (2.37 log CFU/g).


Assuntos
Desinfetantes/farmacologia , Microbiologia de Alimentos/métodos , Salmonella enteritidis/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Ondas Ultrassônicas , Aderência Bacteriana/efeitos dos fármacos , Contagem de Colônia Microbiana , Detergentes/farmacologia , Ácido Láctico/farmacologia , Nanopartículas Metálicas/química , Salmonella enteritidis/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Verduras/microbiologia
15.
Braz J Microbiol ; 52(1): 173-183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33107010

RESUMO

Salmonella Enteritidis has caused, since the 1980s, a sustained epidemic of human infections in many countries. This study analyzed S. Enteritidis strains isolated before and after the epidemic period in Brazil regarding their capacities to survive to acid, oxidative, and high-temperature stresses, and capacity to grow in egg albumen. Moreover, the ability to invade human epithelial cells (Caco-2) and to survive inside human (U937) and chicken (HD11) macrophages was checked. Post-epidemic strains showed a better ability to survive after 10 min under acid stress at 37 °C (P ≤ 0.05). However, both groups of strains showed similar ability to survive after 1 h under acid stress at 37 °C and at 42 °C independently of the time of exposure. Similar ability was verified in both groups of strains regarding oxidative stress, growth in egg albumen, high-temperature stress, invasion to Caco-2 cells, and invasion and survival in macrophages. In conclusion, post-epidemic S. Enteritidis strains showed a better ability to survive under the acid stress found in the stomach, which might be an advantage to reach the intestine and colonize chickens and humans. However, both groups of strains did not differ significantly in the majority of the phenotypic tests analyzed in this study.


Assuntos
Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/fisiologia , Animais , Brasil/epidemiologia , Células CACO-2 , Galinhas , Humanos , Viabilidade Microbiana , Fenótipo , Infecções por Salmonella/epidemiologia , Salmonelose Animal/epidemiologia , Salmonella enteritidis/genética , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/isolamento & purificação
16.
Foodborne Pathog Dis ; 18(3): 202-209, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216648

RESUMO

The frequent outbreaks of foodborne pathogens have stimulated the demand of biosensors capable of rapid and multiplex detection of contaminated food. In this study, surface plasmon resonance imaging (SPRi) was used in simultaneous label-free detection of multiple foodborne pathogens, mainly Salmonella spp. and Shiga-toxin producing Escherichia coli (STEC), in commercial chicken carcass rinse. The antibodies were immobilized on the same SPRi sensor chip as a label-free immunoassay. Their immobilization concentrations were optimized to be ranging from 0.25 to 1.0 mg/mL, and independent of pH values. This label-free immunoassay achieved 106 colony-forming unit (CFU)/mL limit of detection for Salmonella, which was further improved to 1.0 CFU/mL with overnight bacteria enrichment. The injected samples with different bacteria, Salmonella Enteritidis, STEC, and Listeria monocytogenes, have been identified by the same biochip. Moreover, the SPRi signals revealed complex interference effects among coexisting bacteria species in heterogeneous bacteria solutions. This SPRi-based immunoassay demonstrates the great potential in high-throughput screening of multiple pathogenic bacteria coexisting in chicken carcass rinse. The reliability of antibody immobilization and cross-reactions of different antibodies on the same biochip are the major challenges of practical application of SPRi.


Assuntos
Técnicas Biossensoriais/métodos , Galinhas/microbiologia , Microbiologia de Alimentos/métodos , Imunoensaio/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Doenças Transmitidas por Alimentos/prevenção & controle , Limite de Detecção , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella enteritidis/crescimento & desenvolvimento , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento
17.
Braz J Microbiol ; 52(1): 419-429, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33150477

RESUMO

Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.


Assuntos
Galinhas/microbiologia , Flagelina/biossíntese , Flagelina/imunologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/imunologia , Animais , Proteínas de Bactérias/genética , Flagelos/fisiologia , Flagelina/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/imunologia , Salmonella enteritidis/genética , Salmonella enteritidis/crescimento & desenvolvimento
18.
Mol Cell Probes ; 55: 101690, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33345976

RESUMO

Several rapid methods based on nucleic acids can detect foodborne pathogens, such as Salmonella spp. However, a common reference that enables metrological traceability among measurement results is not available. Reference materials (RM) are thus key to guarantee methodological comparability. This study developed a candidate genomic DNA reference material for Salmonella enteritidis quantification to establish performance conditions and reference values for normalized RM production. The growth of Salmonella enteritidis ATCC® 13076 in Rappaport Vassiliadis selective medium was characterized, and we optimized a method of DNA extraction using cetrimonium bromide (CTAB) and LiCl. In a first stage six concentrations of DNA were prepared with and without yeast RNA (40 ng/µL) to evaluate its effect as a stabilizer in terms of homogeneity and short-term stability. Based on the findings, in a second stage two DNA concentrations were prepared and a reference value with its uncertainty was assigned based on the results of characterization, homogeneity, and stability studies using digital polymerase chain reaction and the gene targets, invA, ttr, and hilA. The material was stable for 9 months at 4 °C, with a expanded uncertainty contribution range of 11%-14%. The novel candidate RM is the first to be developed nationwide and will improve the quality of measurements in the area of food safety.


Assuntos
Genoma Bacteriano , Reação em Cadeia da Polimerase/métodos , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Congelamento , Cinética , Padrões de Referência , Análise de Regressão , Salmonella enteritidis/crescimento & desenvolvimento , Incerteza
19.
Food Microbiol ; 94: 103645, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279070

RESUMO

As a consequence of developing antimicrobial resistance to disinfectants, copper, which exhibits antimicrobial activity, has been studied as a possible alternative to the use of stainless steel surfaces. The aim was to evaluate the antimicrobial activity of copper surfaces in preventing biofilm formation by Salmonella Enteritidis and to determine their corrosive capacity. Strains of S. Enteritidis were incubated at 4 °C, 12 °C, and 25 °C with 1 cm2 coupons of electrolytic copper (99.9% Cu), brass (70% Cu), copper coated with tin, and stainless steel (control). A planktonic cell-suspension assay was used, followed by serial dilutions and bacterial counts. The corrosion test was performed with two disinfectants: benzalkonium chloride and sodium hypochlorite (100, 200, and 400 ppm). There was a significant reduction in biofilm production (log10 CFU cm-2) on the copper (2.64 at 4 °C, 4.20 at 12 °C, 4.56 at 25 °C) and brass (2.79 at 4 °C, 3.49 at 12 °C, 4.55 at 25 °C) surfaces compared to the control (5.68 at 4 °C, 5.89 at 12 °C, 6.01 at 25 °C). The antimicrobial surfaces showed uniform corrosion similar to that of surfaces generally used. These results demonstrated the effectiveness of copper surfaces in reducing S. Enteritidis and suggest they can be used as a complementary antimicrobial to control for this pathogen.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Desinfetantes/farmacologia , Manipulação de Alimentos/instrumentação , Salmonella enteritidis/efeitos dos fármacos , Animais , Cobre/análise , Contaminação de Equipamentos/prevenção & controle , Aves Domésticas , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/fisiologia , Aço Inoxidável/análise , Zinco/análise
20.
Poult Sci ; 99(11): 5999-6006, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142518

RESUMO

In this study, we aimed to assess the feasibility of the lactic acid bacterium Lactobacillus kefiranofaciens DN1 (LKF_DN1) and the yeast Kluyveromyces marxianus KU140723-05 (KMA5), recently isolated from kefir, as probiotics. Specifically, we evaluated the effect of early administration of these 2 microbes on the inhibition of Salmonella Enteritidis (SE) colonization in neonatal chicks. We also examined the effects of exposure of chicks to probiotics before SE exposure on the reduction in the number of gut SE. A total of 108 1-day-old specific-pathogen-free male layer chicks were used for 3 independent experiments. The experimental chicks were randomly divided into 6 groups (negative control: basal diet [BD] without probiotics and SE; positive control: BD; probiotic group [PG] 1: BD + LKF_DN1; PG2: BD + KMA5; PG3: BD + LKF_DN1 + KMA5; and PG4: BD+ a commercial product IDF-7), all of which, except negative control, were coadministered with SE strain resistant to rifampicin (SERR). We found that the administration of LKF_DN1 and/or KMA5 reduced the number of viable cells of the SERR strain in chicks by up to 1.90 log10, relative to positive control chicks. Compared with late administration (day [D] 10 and D11), early administration (D1 and D2) of the probiotics was more effective in reducing SERR cell numbers in the gut. Furthermore, we detected no significant difference in the reduction of gut SERR cell numbers in chicks from the same groups exposed to the probiotics at D10 and D11 before and after administration with SERR. Collectively, our findings indicate that, as dietary additives, LKF_DN1 and KMA5 showed potential probiotic activity in chicks. Moreover, the combination of the lactic acid bacteria and/or yeast strain was found to rapidly reduce SE numbers in the chick gut and showed a prolonged inhibitory effect against SE colonization. We, thus, propose that the administration of these 2 probiotics, as early as possible after hatching, would be considerably effective in controlling SE colonization in the guts of chicks.


Assuntos
Kluyveromyces , Lactobacillus , Interações Microbianas , Doenças das Aves Domésticas , Probióticos , Salmonelose Animal , Salmonella enteritidis , Animais , Galinhas , Kluyveromyces/fisiologia , Lactobacillus/fisiologia , Masculino , Interações Microbianas/fisiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enteritidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...