Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Immunol Lett ; 241: 49-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942191

RESUMO

Prohibitin is a highly conserved ubiquitously expressed protein involved in several key cellular functions. Targeting of this protein in the membrane by the virulence polysaccharide, Vi, of human typhoid-causing pathogen, Salmonella enterica serovar Typhi (S. Typhi), results in suppression of IL-2 secretion from T cells activated through the T-cell receptor (TCR). However, the mechanism of this suppression remains unclear. Here, using Vi as a probe, we show that membrane prohibitin associates with the src-tyrosine kinase, p56lck (Lck), and actin in human model T cell line, Jurkat. Activation with anti-CD3 antibody brings about dissociation of this complex, which coincides with downstream ERK activation. The trimolecular complex reappears towards culmination of proximal TCR signaling. Engagement of cells with Vi prevents TCR-triggered activation of Lck and ERK by inhibiting dissociation of the former from prohibitin. These findings suggest a regulatory role for membrane prohibitin in Lck activation and TCR signaling.


Assuntos
Membrana Celular/metabolismo , Complexos Multiproteicos/metabolismo , Proibitinas/metabolismo , Salmonella typhi/patogenicidade , Linfócitos T/fisiologia , Actinas/metabolismo , Humanos , Terapia de Imunossupressão , Células Jurkat , Ativação Linfocitária , Polissacarídeos Bacterianos/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Fatores de Virulência/imunologia
2.
J Biol Chem ; 298(1): 101486, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896394

RESUMO

Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and 13C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.


Assuntos
Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide , Acetiltransferases/metabolismo , Animais , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Virulência
3.
Front Immunol ; 12: 728685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659215

RESUMO

Mucosal-associated invariant T (MAIT) cells are an innate-like population of T cells that display a TCR Vα7.2+ CD161+ phenotype and are restricted by the nonclassical MHC-related molecule 1 (MR1). Although B cells control MAIT cell development and function, little is known about the mechanisms underlying their interaction(s). Here, we report, for the first time, that during Salmonella enterica serovar Typhi (S. Typhi) infection, HLA-G expression on B cells downregulates IFN-γ production by MAIT cells. In contrast, blocking HLA-G expression on S. Typhi-infected B cells increases IFN-γ production by MAIT cells. After interacting with MAIT cells, kinetic studies show that B cells upregulate HLA-G expression and downregulate the inhibitory HLA-G receptor CD85j on MAIT cells resulting in their loss. These results provide a new role for HLA-G as a negative feedback loop by which B cells control MAIT cell responses to antigens.


Assuntos
Antígenos CD/metabolismo , Linfócitos B/metabolismo , Antígenos HLA-G/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Adulto , Antígenos CD/genética , Linfócitos B/imunologia , Linfócitos B/microbiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Cinética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/microbiologia , Fenótipo , Salmonella typhi/imunologia , Transdução de Sinais , Febre Tifoide/genética , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Adulto Jovem
4.
Cell Rep ; 36(10): 109654, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496256

RESUMO

Many bacterial pathogens secrete A(2)B5 toxins comprising two functionally distinct yet complementary "A" and "B" subunits to benefit the pathogens during infection. The lectin-like pentameric B subunits recognize specific sets of host glycans to deliver the toxin into target host cells. Here, we offer the molecular mechanism by which neutralizing antibodies, which have the potential to bind to all glycan-receptor binding sites and thus completely inhibit toxin binding to host cells, are inhibited from exerting this action. Cryogenic electron microscopy (cryo-EM)-based analyses indicate that the skewed positioning of the toxin A subunit(s) toward one side of the toxin B pentamer inhibited neutralizing antibody binding to the laterally located epitopes, rendering some glycan-receptor binding sites that remained available for the toxin binding and endocytosis process, which is strikingly different from the counterpart antibodies recognizing the far side-located epitopes. These results highlight additional features of the toxin-antibody interactions and offer important insights into anti-toxin strategies.


Assuntos
Toxinas Bacterianas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica/fisiologia , Salmonella/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Humanos , Camundongos , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia
5.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576166

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is a human-limited intracellular pathogen and the cause of typhoid fever, a severe systemic disease. Pathogen-host interaction at the metabolic level affects the pathogenicity of intracellular pathogens, but it remains unclear how S. Typhi infection influences host metabolism for its own benefit. Herein, using metabolomics and transcriptomics analyses, combined with in vitro and in vivo infection assays, we investigated metabolic responses in human macrophages during S. Typhi infection, and the impact of these responses on S. Typhi intracellular replication and systemic pathogenicity. We observed increased glucose content, higher rates of glucose uptake and glycolysis, and decreased oxidative phosphorylation in S. Typhi-infected human primary macrophages. Replication in human macrophages and the bacterial burden in systemic organs of humanized mice were reduced by either the inhibition of host glucose uptake or a mutation of the bacterial glucose uptake system, indicating that S. Typhi utilizes host-derived glucose to enhance intracellular replication and virulence. Thus, S. Typhi promotes its pathogenicity by inducing metabolic changes in host macrophages and utilizing the glucose that subsequently accumulates as a nutrient for intracellular replication. Our findings provide the first metabolic signature of S. Typhi-infected host cells and identifies a new strategy utilized by S. Typhi for intracellular replication.


Assuntos
Glucose/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Febre Tifoide/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Virulência
6.
Cell Rep ; 36(8): 109614, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433041

RESUMO

Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1ß. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.


Assuntos
Carnívoros/metabolismo , Evolução Molecular , Inflamassomos/metabolismo , Zoonoses/patologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Caspase 8/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Morte Celular , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhi/patogenicidade , Zoonoses/imunologia , Zoonoses/parasitologia
7.
Molecules ; 26(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34443531

RESUMO

The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Abelhas/química , Própole/farmacologia , Alcaloides/química , Animais , Anti-Infecciosos/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Flavonoides/química , Glicosídeos/química , Himenópteros/química , Fenóis/química , Própole/química , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/patogenicidade , Saponinas/química , Shigella/efeitos dos fármacos , Shigella/patogenicidade , Taninos/química , Terpenos/química
8.
PLoS Pathog ; 17(7): e1009713, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242364

RESUMO

Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26's role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Infecções por Salmonella/imunologia , Salmonella typhi/patogenicidade , Animais , Predisposição Genética para Doença , Células HeLa , Humanos , Inflamação/genética , Inflamação/imunologia , Camundongos , Infecções por Salmonella/genética
9.
PLoS Pathog ; 17(6): e1009319, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143852

RESUMO

Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella.


Assuntos
Salmonella paratyphi A/patogenicidade , Salmonella typhi/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Proliferação de Células , Células HeLa , Humanos , Camundongos , Células RAW 264.7 , Salmonella paratyphi A/metabolismo , Salmonella typhi/metabolismo , Análise de Célula Única , Células U937 , Fatores de Virulência/metabolismo
10.
PLoS Pathog ; 17(1): e1009209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465146

RESUMO

Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DnaB Helicases/metabolismo , Matriz Extracelular/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Anticorpos Monoclonais/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , DnaB Helicases/antagonistas & inibidores , DnaB Helicases/genética , Humanos , Fatores Hospedeiros de Integração/genética , Salmonella typhi/classificação , Salmonella typhi/genética , Febre Tifoide/tratamento farmacológico , Febre Tifoide/imunologia
12.
PLoS Pathog ; 16(10): e1008998, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085725

RESUMO

Despite recent advances in typhoid fever control, asymptomatic carriage of Salmonella Typhi in the gallbladder remains poorly understood. Aiming to understand if S. Typhi becomes genetically adapted for long-term colonisation in the gallbladder, we performed whole genome sequencing on a collection of S. Typhi isolated from the gallbladders of typhoid carriers. These sequences were compared to contemporaneously sampled sequences from organisms isolated from the blood of acute patients within the same population. We found that S. Typhi carriage was not restricted to any particular genotype or conformation of antimicrobial resistance genes, but was largely reflective of S. Typhi circulating in the general population. However, gallbladder isolates showed a higher genetic variability than acute isolates, with median pairwise SNP distances of 21 and 13 SNPs (p = 2.8x10-9), respectively. Within gallbladder isolates of the predominant H58 genotype, variation was associated with a higher prevalence of nonsense mutations. Notably, gallbladder isolates displayed a higher frequency of non-synonymous mutations in genes encoding hypothetical proteins, membrane lipoproteins, transport/binding proteins, surface antigens, and carbohydrate degradation. Specifically, we identified several gallbladder-specific non-synonymous mutations involved in LPS synthesis and modification, with some isolates lacking the Vi capsular polysaccharide vaccine target due to the 134Kb deletion of SPI-7. S. Typhi is under strong selective pressure in the human gallbladder, which may be reflected phylogenetically by long terminal branches that may distinguish organisms from chronic and acute infections. Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generate new antigenic variants and raises questions regarding the role of carriage in the epidemiology of typhoid fever.


Assuntos
Vesícula Biliar/microbiologia , Salmonella typhi/genética , Febre Tifoide/genética , Adaptação Biológica , Adulto , Idoso , Antibacterianos/uso terapêutico , Feminino , Variação Genética/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Filogenia , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Sequenciamento Completo do Genoma/métodos
13.
Am J Trop Med Hyg ; 103(3): 1032-1038, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720632

RESUMO

Transcutaneous vaccination can induce both mucosal and systemic immune responses. However, there are few data on anti-polysaccharide responses following transcutaneous vaccination of polysaccharides, despite the role that anti-polysaccharide responses play in protecting against intestinal mucosal and respiratory pathogens. Whether transcutaneous vaccination with a conjugate polysaccharide vaccine would be able to induce memory responses is also unknown. To address this, we transcutaneously vaccinated mice with virulence antigen (Vi) polysaccharide of Salmonella enterica serovar Typhi (the cause of typhoid fever), either in unconjugated or conjugated form (the latter as a Vi-DT conjugate). We also assessed the ability of the immunoadjuvant cholera toxin to impact responses following vaccination. We found that presenting Vi in a conjugate versus nonconjugate form transcutaneously resulted in comparable serum IgG responses but higher serum and lamina propria lymphocyte IgA anti-Vi responses, as well as increased IgG memory responses. The addition of immunoadjuvant did not further increase these responses; however, it boosted fecal IgA and serum IgG anti-Vi responses. Our results suggest that transcutaneous vaccination of a conjugate vaccine can induce systemic as well as enhanced mucosal and memory B-cell anti-polysaccharide responses.


Assuntos
Anticorpos Antibacterianos/sangue , Imunidade Humoral/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Salmonella typhi/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/administração & dosagem , Vacinação/métodos , Administração Cutânea , Animais , Modelos Animais de Doenças , Feminino , Humanos , Esquemas de Imunização , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Memória Imunológica/efeitos dos fármacos , Camundongos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/patogenicidade , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Vacinas Tíficas-Paratíficas/biossíntese , Vacinas Conjugadas
14.
Am J Trop Med Hyg ; 103(3): 1020-1031, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700668

RESUMO

Typhoid fever transmission occurs through ingestion of food or water contaminated with Salmonella Typhi, and case-control studies are often conducted to identify outbreak sources and transmission vehicles. However, there is no current summary of the associations among water, sanitation, and hygiene (WASH); and food exposures and typhoid from case-control studies. We conducted a systematic review and meta-analysis of case-control studies to evaluate the associations among typhoid fever and predicted WASH or food exposure risk factors (13), and protective factors (7). Overall, 19 manuscripts describing 22 case-control studies were included. Two studies were characterized as having low risk of bias, one as medium risk, and 19 as high risk. In total, nine of 13 predicted risk factors were associated with increased odds of typhoid (odds ratio [OR] = 1.4-2.4, I 2 = 30.5-74.8%.), whereas five of seven predicted protective factors were associated with lower odds of typhoid (OR = 0.52-0.73, I 2 = 38.7-84.3%). In five types of sensitivity analyses, two (8%) of 26 summary associations changed significance from the original analysis. Results highlight the following: the importance of household hygiene transmission pathways, the need for further research around appropriate food interventions and the risk of consuming specific foods and beverages outside the home, and the absence of any observed association between sanitation exposures and typhoid fever. We recommend that typhoid interventions focus on interrupting household transmission routes and that future studies provide more detailed information about WASH and food exposures to inform better targeted interventions.


Assuntos
Surtos de Doenças , Desinfecção das Mãos , Salmonella typhi/patogenicidade , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Estudos de Casos e Controles , Microbiologia de Alimentos , Humanos , Razão de Chances , Fatores de Risco , Saneamento/métodos , Febre Tifoide/microbiologia , Microbiologia da Água , Abastecimento de Água/métodos
15.
Genomics ; 112(5): 3374-3381, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565239

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is an essential enteric fever causing bacterium worldwide. Due to the emergence of multidrug-resistant strains, urgently attention is needed to prevent the global spread of them. Vaccination is an alternative approach to control these kinds of infections. Currently available commercial vaccines have significant limitations such as non-recommendation for children below six years of age and poor long-term efficacy. Thus, the development of a new vaccine overcoming these limitations is immediately required. Reverse Vaccinology (RV) is one of the most robust approaches for direct screening of genome sequence assemblies to identify new protein-based vaccines. The present study aimed to identify potential vaccine candidates against S. Typhi by using the RV approach. Immunogenicity of the best candidate against S. Typhi was further investigated. The proteome of S. Typhi strain Ty2 was analyzed to identify the most immunogenic, conserved, and protective surface proteins. Among the predicted vaccine candidates, steD (fimbrial subunit) was the best for qualifying all the applied criteria. The synthetic steD gene was expressed in E.coli, and the mice were immunized with purified recombinant steD protein and then challenged with a lethal dose of S. Typhi. Immunized animals generated high protein-specific antibody titers and demonstrated 70% survival following lethal dose challenge with S. Typhi. Pretreatment of the S. Typhi cells with immunized mice antisera significantly decreased their adhesion to Caco-2 cells. Altogether, steD as a protective antigen could induce a robust and long term and protective immunity in immunized mice against S. Typhi challenge.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas contra Salmonella , Salmonella typhi/imunologia , Febre Tifoide/prevenção & controle , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Epitopos/química , Feminino , Humanos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas Recombinantes/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhi/patogenicidade , Homologia de Sequência de Aminoácidos , Vacinação , Vacinologia , Fatores de Virulência/imunologia
16.
Cell Host Microbe ; 27(6): 937-949.e6, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396840

RESUMO

Typhoidal and non-typhoidal Salmonelleae (NTS) cause typhoid fever and gastroenteritis, respectively, in humans. Salmonella typhoid toxin contributes to typhoid disease progression and chronic infection, but little is known about the role of its NTS ortholog. We found that typhoid toxin and its NTS ortholog induce different clinical presentations. The PltB subunit of each toxin exhibits different glycan-binding preferences that correlate with glycan expression profiles of host cells targeted by each bacterium at the primary infection or intoxication sites. Through co-crystal structures of PltB subunits bound to specific glycan receptor moieties, we show that they induce markedly different glycan-binding preferences and virulence outcomes. Furthermore, immunization with the NTS S. Javiana or its toxin offers cross-reactive protection against lethal-dose typhoid toxin challenge. Cumulatively, these results offer insights into the evolution of host adaptations in Salmonella AB toxins, their cell and tissue tropisms, and the design for improved typhoid vaccines and therapeutics.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Adaptação ao Hospedeiro/efeitos dos fármacos , Adaptação ao Hospedeiro/fisiologia , Salmonella typhi/metabolismo , Sequência de Aminoácidos , Animais , Antitoxinas/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Reações Cruzadas/imunologia , Endotoxinas/genética , Endotoxinas/imunologia , Endotoxinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Polissacarídeos/biossíntese , Salmonella , Salmonella typhi/imunologia , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/imunologia , Virulência
17.
Microb Pathog ; 146: 104222, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387390

RESUMO

Inflammasome activation is an important host response to infectious diseases, but the difference in inflammasome activation between typhoid fever and non-typhoidal Salmonella infection has been rarely studied. To determine whether inflammasome activation in macrophages after S. Typhi and S. Typhimurium infection is different, we measured pyroptosis, caspase-1 activation, and IL-1ß secretion in monocyte-derived macrophages infected with S. Typhi or S. Typhimurium both in vitro and ex vivo. The role of Vi capsule and virulence genes in Salmonella pathogenicity island-1 (SPI-1), belonging to type III secretion system, was also examined. S. Typhi caused more pyroptosis, caspase-1 activation, and IL-1ß production than S. Typhimurium did, predominantly within 2 h of infection, in the context of high number of infecting bacteria. Mutagenesis and complementation experiments confirmed that SPI-1 effectors but not Vi were associated with greater inflammasome activation. The expression levels of invA and hilA were significantly higher in S. Typhi than in S. Typhimurium at early log phase in SPI-1 environment. Thus, S. Typhi, relative to its non-typhoidal counterpart, S. Typhimurium, induces greater SPI-1-dependent inflammasome activation in monocyte-derived macrophages. This finding may explain why S. Typhi causes a hyperinflammatory state at bacteremic stage in typhoid fever.


Assuntos
Salmonella typhi/patogenicidade , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Caspase 1/metabolismo , Expressão Gênica , Ilhas Genômicas/genética , Humanos , Inflamassomos/metabolismo , Inflamação/etiologia , Inflamação/microbiologia , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Polissacarídeos Bacterianos/genética , Cultura Primária de Células , Salmonella typhi/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Células THP-1 , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Febre Tifoide/etiologia , Febre Tifoide/microbiologia , Virulência/genética , Fatores de Virulência/genética
18.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353952

RESUMO

Patients with sepsis frequently require mechanical ventilation (MV) to survive. However, MV has been shown to induce the production of proinflammatory cytokines, causing ventilator-induced lung injury (VILI). It has been demonstrated that hypoxia-inducible factor (HIF)-1α plays a crucial role in inducing both apoptotic and inflammatory processes. Low-molecular-weight heparin (LMWH) has been shown to have anti-inflammatory activities. However, the effects of HIF-1α and LMWH on sepsis-related acute lung injury (ALI) have not been fully delineated. We hypothesized that LMWH would reduce lung injury, production of free radicals and epithelial apoptosis through the HIF-1α pathway. Male C57BL/6 mice were exposed to 6-mL/kg or 30-mL/kg MV for 5 h. Enoxaparin, 4 mg/kg, was administered subcutaneously 30 min before MV. We observed that MV with endotoxemia induced microvascular permeability; interleukin-6, tumor necrosis factor-α, macrophage inflammatory protein-2 and vascular endothelial growth factor protein production; neutrophil infiltration; oxidative loads; HIF-1α mRNA activation; HIF-1α expression; bronchial epithelial apoptosis; and decreased respiratory function in mice (p < 0.05). Endotoxin-induced augmentation of VILI and epithelial apoptosis were reduced in the HIF-1α-deficient mice and in the wild-type mice following enoxaparin administration (p < 0.05). Our data suggest that enoxaparin reduces endotoxin-augmented MV-induced ALI, partially by inhibiting the HIF-1α pathway.


Assuntos
Anti-Inflamatórios/administração & dosagem , Endotoxemia/reabilitação , Enoxaparina/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lipopolissacarídeos/efeitos adversos , Salmonella typhi/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/metabolismo , Enoxaparina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Subcutâneas , Interleucina-6/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Salmonella typhi/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
19.
Sci Rep ; 10(1): 7817, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385379

RESUMO

The essentiality of DNA Gyrase in basic cellular processes in bacterial pathogens makes it an ideal drug target. Though the Gyrase has a conserved mechanism of action, the complete DNA wrapping and binding process is still unknown. In this study, we have identified six arginine residues R556, R612, R667, R716, R766, and R817 in the DNA GyraseA - C-terminal domain from Salmonella enterica serovar Typhi (StGyrA-CTD) to be essential for DNA wrapping and sliding by a sequence and structure analysis. Through site-directed mutagenesis and EMSA studies, we observed that the substitution of R667 (blade 3) and R716 (blade 4) in StGyrA-CTD led to loss of DNA binding. Whereas, upon mutation of residue R612 (blade2), R766 (blade5) and R817 (blade6) along with supporting residue R712 (blade 4) a decrease in binding affinity was seen. Our results indicate that R667 and R716 act as a pivot point in DNA wrapping and sliding during gyrase catalytic activity. In this study, we propose that the DNA wrapping mechanism commences with DNA binding at blade3 and blade4 followed by other blades to facilitate the DNA sliding during supercoiling activity. This study provides a better understanding of the DNA binding and wrapping mechanism of GyrA-CTD in DNA Gyrase.


Assuntos
Arginina/genética , DNA Girase/genética , Conformação Proteica em Folha beta/genética , Salmonella typhi/genética , Sequência de Aminoácidos/genética , DNA Girase/ultraestrutura , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Salmonella typhi/enzimologia , Salmonella typhi/patogenicidade
20.
Indian J Med Res ; 151(1): 22-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134011

RESUMO

The low- and middle-income countries bear the highest burden of typhoid fever in the world. India, along with other South Asian countries, has a significant incidence of typhoid fever among young children though there is a paucity of published data on community burden. In spite of the availability of Vi-polysaccharide (Vi-PS) and conjugated Vi-PS vaccines, these are not adequately utilized in India and in the neighbouring countries. To address many shortcomings of the unconjugated Vi-PS vaccines, typhoid conjugate vaccines (TCVs) are developed by conjugating Vi-PS with different carrier proteins. Three such vaccines using tetanus toxoid as a carrier protein are already licensed in India. Several other Vi-PS conjugates are currently in various stages of development. The current review provides an update on the existing and upcoming new TCVs along with a detailed discussion on the various issues involved with their clinical use and limitations.


Assuntos
Anticorpos Antibacterianos/imunologia , Polissacarídeos Bacterianos/uso terapêutico , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/uso terapêutico , Vacinas Conjugadas/uso terapêutico , Humanos , Índia/epidemiologia , Polissacarídeos Bacterianos/imunologia , Salmonella typhi/patogenicidade , Febre Tifoide/epidemiologia , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...