Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pak J Pharm Sci ; 27(5): 1309-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25176385

RESUMO

The genera Suaeda and Salsola are halophytic plants belong to the family Chenopodiaceae. Species of these genera have been extensively used in traditional medicines against many diseases due to their various bioactive compounds such as carotenoids, vitamins, sterol, phenolic compounds etc. The present research was carried out to establish detailed pharmacognosy of Suaeda fruticosa, Suaeda monoica, Salsola imbricata and Salsola tragus, which included macroscopy, microscopy, physico-chemical parameters and qualitative phytochemical screening of leaf samples extracted with methanol and chloroform. It was observed that macroscopic and microscopic characteristics were diagnostic features and can be used for distinction and identification of these closely related plant species. Phytochemically, these plant species are rich in constituents like anthraquinones, alkaloids, carbohydrates, cardiac glycosides, flavonoids, saponins, phenolic compounds and terpenoids. Physico-chemical parameters revealed that in all investigated plant species; methanol extractive values were higher than that of chloroform. Moreover, total ash values were found to be higher than other acid insoluble and water-soluble ash values, while a considerable amount of moisture was present in the species of both genera. On the basis of pharmacognosy, species of Suaeda were found to be more promising than Salsola. Present investigation will contribute towards establishment of pharmacognostic profile of these medicinally effective plants species.


Assuntos
Chenopodiaceae/química , Salsola/química , Chenopodiaceae/citologia , Microscopia , Farmacognosia , Folhas de Planta/química , Folhas de Planta/citologia , Salsola/citologia
2.
Plant Cell Environ ; 37(11): 2601-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24716875

RESUMO

Photosynthesis in C(3) -C(4) intermediates reduces carbon loss by photorespiration through refixing photorespired CO(2) within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C(3) -C(4) plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C(3) -C(4) Salsola divaricata was tested to determine whether it reverts to C(3) photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C(3) -C(4) features acclimate to these growth conditions. The CO(2) compensation point and net rates of CO(2) assimilation in cold-grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C(3) -C(4) intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non-phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold-grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain.


Assuntos
Aclimatação/fisiologia , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Temperatura Baixa , Fotossíntese , Salsola/fisiologia , Western Blotting , Respiração Celular , Citocromos/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Salsola/citologia , Salsola/enzimologia , Salsola/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA