Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
PLoS One ; 16(7): e0254426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292968

RESUMO

Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors. These tumors displayed significantly shorter latency and a greater multiple incidence rate in Fsp1-Cre;NT3 compared to Osx-Cre;NT3 mice, regardless of sex. Histological assessment revealed poorly differentiated solid tumors with some spindled patterns, as well as robust RelB immunostaining, confirming activation of alternative NF-κB. Even though NT3 expression also occurs in the osteolineage in Osx-Cre;NT3 mice, we observed no bony lesions. The staining profiles and pattern of Cre expression in the two lines pointed to a mesenchymal tumor origin. Immunohistochemistry revealed that these tumors stain strongly for alpha-smooth muscle actin (αSMA), although vimentin staining was uniform only in Osx-Cre;NT3 tumors. Negative CD45 and S100 immunostains precluded hematopoietic and melanocytic origins, respectively, while positive staining for cytokeratin 19 (CK19), typically associated with epithelia, was found in subpopulations of both tumors. Principal component, differential expression, and gene ontology analyses revealed that NT3 tumors are distinct from normal mesenchymal tissues and are enriched for NF-κB related biological processes. We conclude that constitutive activation of the alternative NF-κB pathway in the mesenchymal lineage drives spontaneous sarcoma and provides a novel mouse model for NF-κB related sarcomas.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrases , Proteínas de Neoplasias , Proteínas Serina-Treonina Quinases , Proteína A4 de Ligação a Cálcio da Família S100 , Sarcoma Experimental , Fator de Transcrição Sp7 , Animais , Indução Enzimática , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Quinase Induzida por NF-kappaB
2.
Cell Mol Immunol ; 18(3): 711-722, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32728200

RESUMO

In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.


Assuntos
Fibrossarcoma/patologia , Receptores de Hialuronatos/metabolismo , Interleucina-33/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Proliferação de Células , Fibrossarcoma/etiologia , Fibrossarcoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Interleucina-33/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Sarcoma Experimental/etiologia , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Clin Invest ; 130(9): 4921-4934, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544087

RESUMO

Cachexia, a devastating wasting syndrome characterized by severe weight loss with specific losses of muscle and adipose tissue, is driven by reduced food intake, increased energy expenditure, excess catabolism, and inflammation. Cachexia is associated with poor prognosis and high mortality and frequently occurs in patients with cancer, chronic kidney disease, infection, and many other illnesses. There is no effective treatment for this condition. Hypothalamic melanocortins have a potent and long-lasting inhibitory effect on feeding and anabolism, and pathophysiological processes increase melanocortin signaling tone, leading to anorexia, metabolic changes, and eventual cachexia. We used 3 rat models of anorexia and cachexia (LPS, methylcholanthrene sarcoma, and 5/6 subtotal nephrectomy) to evaluate efficacy of TCMCB07, a synthetic antagonist of the melanocortin-4 receptor. Our data show that peripheral treatment using TCMCB07 with intraperitoneal, subcutaneous, and oral administration increased food intake and body weight and preserved fat mass and lean mass during cachexia and LPS-induced anorexia. Furthermore, administration of TCMCB07 diminished hypothalamic inflammatory gene expression in cancer cachexia. These results suggest that peripheral TCMCB07 treatment effectively inhibits central melanocortin signaling and therefore stimulates appetite and enhances anabolism, indicating that TCMCB07 is a promising drug candidate for treating cachexia.


Assuntos
Caquexia/tratamento farmacológico , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Sarcoma Experimental/tratamento farmacológico , Animais , Apetite/efeitos dos fármacos , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Sarcoma Experimental/complicações , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia
4.
PLoS Genet ; 15(4): e1008039, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30970016

RESUMO

The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development.


Assuntos
Sarcoma Experimental/etiologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X/deficiência , Proteína Nuclear Ligada ao X/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/metabolismo , Modelos Animais de Doenças , Eritropoese , Feminino , Técnicas de Inativação de Genes , Globinas/genética , Humanos , Mutação com Perda de Função , Masculino , Neurofibromina 1/deficiência , Neurofibromina 1/genética , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Homeostase do Telômero/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Cancer Res ; 79(8): 1938-1951, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30777853

RESUMO

Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1-mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation of NAMPT prevented MDSC mobilization, reactivated specific antitumor immunity, and enhanced the antitumor activity of immune checkpoint inhibitors. Our findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in patients with cancer. SIGNIFICANCE: These findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in cancer patients.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Mamárias Experimentais/patologia , Células Supressoras Mieloides/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sarcoma Experimental/patologia , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Hematopoese , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Anticancer Agents Med Chem ; 19(3): 365-374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30523769

RESUMO

OBJECTIVE: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. BACKGROUND: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. METHODS: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. RESULTS: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. CONCLUSION: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Camptotecina/síntese química , Camptotecina/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas
7.
Curr Med Sci ; 38(4): 697-703, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128881

RESUMO

This study examined the effect of saponins from Tupistra chinensis Bak (STCB) on the growth of sarcoma S-180 cells in vitro and in mouse xenografts as well as the underlying mechanisms. Cell proliferation was assessed by MTT assay. Cell cycle distribution was determined by flow cytometry. Sarcoma S-180 tumor-bearing mice were treated with different doses of STCB with 10 µg/mL 5-fluorouracil (5-Fu) as a positive control. The activity of nuclear factor (NF)-κB was detected by gel mobility shift assay. The mRNA level of NF-κB was determined by real-time quantitative RT-PCR. The results showed that in vitro STCB inhibited the growth of S-180 cells in a concentration-dependent manner, which was accompanied by cell cycle arrest at S-phase. In vivo STCB significantly inhibited the growth of S-180 tumor mouse xenografts in a dose-dependent manner with apparent induction of cell apoptosis. Moreover, STCB inhibited the activity of NF-κB p65 and reduced the expression of NF-κB p65 mRNA in mouse xenografts. It was concluded that STCB inhibits the proliferation and cell cycle progression of S-180 cells by suppressing NF-κB signaling in mouse xenografts. Our findings suggest STCB is a promising agent for the treatment of sarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Saponinas/uso terapêutico , Sarcoma Experimental/tratamento farmacológico , Fator de Transcrição RelA/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparagaceae/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Saponinas/farmacologia , Sarcoma Experimental/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/genética
8.
PLoS One ; 13(4): e0195667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630640

RESUMO

Cancer affects 39.6% of Americans at some point during their lifetime. Solid tumor microenvironments are characterized by a disorganized, leaky vasculature that promotes regions of low oxygenation (hypoxia). Tumor hypoxia is a key predictor of poor treatment outcome for all radiotherapy (RT), chemotherapy and surgery procedures, and is a hallmark of metastatic potential. In particular, the radiation therapy dose needed to achieve the same tumor control probability in hypoxic tissue as in normoxic tissue can be up to 3 times higher. Even very small tumors (<2-3 mm3) comprise 10-30% of hypoxic regions in the form of chronic and/or transient hypoxia fluctuating over the course of seconds to days. We investigate the potential of recently developed lipid-stabilized oxygen microbubbles (OMBs) to improve the therapeutic ratio of RT. OMBs, but not nitrogen microbubbles (NMBs), are shown to significantly increase dissolved oxygen content when added to water in vitro and increase tumor oxygen levels in vivo in a rat fibrosarcoma model. Tumor control is significantly improved with OMB but not NMB intra-tumoral injections immediately prior to RT treatment and effect size is shown to depend on initial tumor volume on RT treatment day, as expected.


Assuntos
Fibrossarcoma/radioterapia , Microbolhas/uso terapêutico , Oxigênio/uso terapêutico , Animais , Feminino , Fibrossarcoma/metabolismo , Humanos , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Ratos , Ratos Endogâmicos F344 , Sarcoma Experimental/metabolismo , Sarcoma Experimental/radioterapia , Pesquisa Translacional Biomédica , Hipóxia Tumoral/efeitos dos fármacos
9.
J Surg Oncol ; 117(6): 1179-1187, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29284070

RESUMO

BACKGROUND AND OBJECTIVES: Soft tissue sarcomas (STS) are mesenchymal malignancies. Treatment mainstay is surgical resection with negative margins ± adjuvant treatment. Fluorescence-guided surgical (FGS) resection can delineate intraoperative margins; FGS has improved oncologic outcomes in other malignancies. This novel strategy may minimize resection-associated morbidity while improving local tumor control. METHODS: We evaluate the tumor-targeting specificity and utility of fluorescence-imaging agents to provide disease-specific contrast. Mice with HT1080 fibrosarcoma tumors received one of five probes: cetuximab-IRDye800CW (anti-EGFR), DC101-IRDye800CW (anti-VEGFR-2), IgG-IRDye800CW, the cathepsin-activated probe Prosense750EX, or the small molecule probe IntegriSense750. Tumors were imaged daily using open- and closed-field fluorescence imaging systems. Tumor-to-background ratios (TBR) were evaluated. On peak TBR days, probe sensitivity was evaluated. Tumors were stained and imaged microscopically. RESULTS: At peak, closed-field imaging TBR of cetuximab-IRDye800CW (16.8) was significantly greater (P < 0.0001) than Integrisense750 (7.0), Prosense750EX (5.8), and DC101-IRDye800CW (3.7). All agents successfully localized as little as 1.0 mg of tumor tissue in the post-resection bed; cetuximab-IRDye800CW generated the greatest contrast (2.5). Cetuximab-IRDye800CW revealed strong tumor affinity microscopically; tumor fluorescence intensity was significantly greater (P < 0.0004) than 0.2 mm away from tumor border. CONCLUSION: This study demonstrates cetuximab-IRDye800CW superiority. FGS has the potential to improve post-resection morbidity and mortality by improving disease detection.


Assuntos
Anticorpos Monoclonais/metabolismo , Fibrossarcoma/cirurgia , Corantes Fluorescentes/metabolismo , Imagem Óptica/métodos , Sarcoma Experimental/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Feminino , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Camundongos , Camundongos Nus , Sarcoma Experimental/diagnóstico por imagem , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas
10.
Nanomedicine ; 14(2): 289-301, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28993266

RESUMO

In order to prevent the aggregation of ICG and enhance its stability, a novel nanoplatform (TiO2:Yb,Ho,F-ß-CD@ICG/HA) was designed for NIR-induced phototherapy along with multi-mode imaging(UCL/MRI/Flu). In this nanosysytem: TiO2:Yb,Ho,F was used as upconversion materials and applied in vivo for the first time; ß-CD acted as a "protective umbrella" to load separated ICG and avoid the low phototherapy efficiency because of its aggregation; HA was the capping agent of ß-CD to prevent ICG unexpected leaking and a target to recognize CD44 receptor. The nanosystem exhibited excellent size (~200 nm) and photo- and thermal-stability, preferable reactive oxygen yield and temperature response (50.4 °C) under 808 nm laser. It could efficiently target and suppress tumor growth. The imaging ability (UCL/MRI) of TiO2:Yb,Ho,F could facilitate diagnosis of the tumor, especially for deep tissues. Altogether, our work successfully improved the phototherapy efficacy through incorporating the ICG into the cavity of ß-CD and applied TiO2:Yb,Ho,F for upconversion imaging in vivo.


Assuntos
Verde de Indocianina/metabolismo , Neoplasias Mamárias Experimentais/terapia , Imagem Multimodal/métodos , Nanopartículas/administração & dosagem , Fototerapia , Sarcoma Experimental/terapia , Animais , Apoptose , Ciclo Celular , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas
11.
PLoS One ; 12(8): e0183783, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854214

RESUMO

Hemocyanin is a multifunctional glycoprotein, which also plays multiple roles in immune defense. While it has been demonstrated that hemocyanin from some mollusks can induce potent immune response and is therefore undergoing clinical trials to be used in anti-tumor immunotherapy, little is currently known about how hemocyanin from arthropods affect tumors. In this study we investigated the anti-tumor activity of hemocyanin from Litopenaeus vannamei on Sarcoma-180 (S180) tumor-bearing mice model. Eight days treatment with 4mg/kg bodyweight of hemocyanin significantly inhibited the growth of S180 up to 49% as compared to untreated. Similarly, histopathology analysis showed a significant decrease in tumor cell number and density in the tissues of treated mice. Moreover, there was a significant increase in immune organs index, lymphocyte proliferation, NK cell cytotoxic activity and serum TNF-α level, suggesting that hemocyanin could improve the immunity of the S180 tumor-bearing mice. Additionally, there was a significant increase in superoxide dismutase (SOD) activity and a decrease in the level of malondialdehyde (MDA) in serum and liver, which further suggest that hemocyanin improved the anti-oxidant ability of the S180 tumor-bearing mice. Collectively, our data demonstrated that L. vannamei hemocyanin had a significant antitumor activity in mice.


Assuntos
Proteínas de Artrópodes/farmacologia , Hemocianinas/farmacologia , Penaeidae/metabolismo , Sarcoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Immunoblotting , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Camundongos , Sarcoma Experimental/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
12.
Integr Biol (Camb) ; 9(6): 555-565, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28513646

RESUMO

Magnetic liposome-mediated combined chemotherapy and hyperthermia is gaining importance as an effective therapeutic modality for cancer. However, control and maintenance of optimum hyperthermia are major challenges in clinical settings due to the overheating of tissues. To overcome this problem, we developed a novel magnetic liposomes formulation co-entrapping a dextran coated biphasic suspension of La0.75Sr0.25MnO3 (LSMO) and iron oxide (Fe3O4) nanoparticles for self-controlled hyperthermia and chemotherapy. However, the general apprehension about biocompatibility and safety of the newly developed formulation needs to be addressed. In this work, in vitro and in vivo biocompatibility and therapeutic evaluation studies of the novel magnetic liposomes are reported. Biocompatibility study of the magnetic liposomes formulation was carried out to evaluate the signs of preliminary systemic toxicity, if any, following intravenous administration of the magnetic liposomes in Swiss mice. Therapeutic efficacy of the magnetic liposomes formulation was evaluated in the fibrosarcoma tumour bearing mouse model. Fibrosarcoma tumour-bearing mice were subjected to hyperthermia following intratumoral injection of single or double doses of the magnetic liposomes with or without chemotherapeutic drug paclitaxel. Hyperthermia (three spurts, each at 3 days interval) with drug loaded magnetic liposomes following single dose administration reduced the growth of tumours by 2.5 fold (mean tumour volume 2356 ± 550 mm3) whereas the double dose treatment reduced the tumour growth by 3.6 fold (mean tumour volume 1045 ± 440 mm3) compared to their corresponding control (mean tumour volume 3782 ± 515 mm3). At the end of the tumour efficacy studies, the presence of MNPs was studied in the remnant tumour tissues and vital organs of the mice. No significant leaching or drainage of the magnetic liposomes during the study was observed from the tumour site to the other vital organs of the body, suggesting again the potential of the novel magnetic liposomes formulation for possibility of developing as an effective modality for treatment of drug resistant or physiologically vulnerable cancer.


Assuntos
Hipertermia Induzida/métodos , Lipossomos/uso terapêutico , Magnetismo , Neoplasias/terapia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Lipossomos/administração & dosagem , Lipossomos/toxicidade , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/toxicidade , Teste de Materiais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/administração & dosagem , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/terapia , Distribuição Tecidual
13.
Oncotarget ; 8(25): 40713-40723, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28489574

RESUMO

Angiogenesis is essential for tumor growth and metastasis, controlling angiogenesis is a promising strategy in cancer treatment. However, thus farther severe side effects of anti-angiogenic drugs have been rather demonstrated, stimulating interest in seeking novel targets of anti-angiogenesis. Neurokinin receptors, also known as tachykinin receptors, are usually considered as drug targets due to diverse physiological functions and their tractability. Although Neurokinin B, the selective natural agonist of neurokinin-3 receptor, have been shown to exhibit anti-angiogenesis activity, the effect and mechanism of neurokinin-3 receptor-mediated angiogenesis still remains unclear. In the present study, we demonstrated that [Mephe7]NKB, an analogue of NKB, possess significant anti-angiogenic effect on CAM. Furthermore, by introducing the tumor angiogenesis homing sequence (NGR), we designed and synthesized two novel agonist analogues of NK3R, NK3R-A1 and NK3R-A2. Both of the two analogues exhibit more efficient anti-migration effect on HUVECs by activating NK3R in vitro, and showed potent antitumor activities with no significant side effects in vivo. Taken together, our results illuminated that NK3R might be a potential novel target for the anti-angiogenesis therapy. Notably, NK3R-A1 might be used as a template for the development of the anti-tumor drugs on the basis of the anti-angiogenesis strategy.


Assuntos
Inibidores da Angiogênese/farmacologia , Neurocinina B/farmacologia , Receptores da Neurocinina-3/agonistas , Sarcoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Neurocinina B/análogos & derivados , Receptores da Neurocinina-3/metabolismo , Sarcoma Experimental/irrigação sanguínea , Sarcoma Experimental/metabolismo , Carga Tumoral/efeitos dos fármacos
14.
Mol Pharm ; 13(12): 4106-4115, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934482

RESUMO

Many conjugates of water-soluble polymers with biologically active molecules were developed during the last two decades. Although, therapeutic effects of these conjugates are affected by the properties of carriers, the properties of the attached drugs appear more important than the same carrier polymer in this case. Pirarubicin (THP), a tetrahydropyranyl derivative of doxorubicin (DOX), demonstrated more rapid cellular internalization and potent cytotoxicity than DOX. Here, we conjugated the THP or DOX to N-(2-hydroxypropyl)methacrylamide copolymer via a hydrazone bond. The polymeric prodrug conjugates, P-THP and P-DOX, respectively, had comparable hydrodynamic sizes and drug loading. Compared with P-DOX, P-THP showed approximately 10 times greater cellular uptake during a 240 min incubation and a cytotoxicity that was more than 10 times higher during a 72-h incubation. A marginal difference was seen in P-THP and P-DOX accumulation in the liver and kidney at 6 h after drug administration, but no significant difference occurred in the tumor drug concentration during 6-24 h after drug administration. Antitumor activity against xenograft human pancreatic tumor (SUIT2) in mice was greater for P-THP than for P-DOX. To sum up, the present study compared the biological behavior of two different drugs, each attached to an N-(2-hydroxypropyl)methacrylamide copolymer carrier, with regard to their uptake by tumor cells, body distribution, accumulation in tumors, cytotoxicity, and antitumor activity in vitro and in vivo. No differences in the tumor cell uptake of the polymer-drug conjugates, P-THP and P-DOX, were observed. In contrast, the intracellular uptake of free THP liberated from the P-THP was 25-30 times higher than that of DOX liberated from P-DOX. This finding indicates that proper selection of the carrier, and especially conjugated active pharmaceutical ingredient (API) are most critical for anticancer activity of the polymer-drug conjugates. THP, in this respect, was found to be a more preferable API for polymer conjugation than DOX. Hence the treatment based on enhanced permeability and retention (EPR) effect that targets more selectively to solid tumors can be best achieved with THP, although both polymer conjugates of DOX and THP exhibited the EPR effects and drug release profiles in acidic pH similarly.


Assuntos
Acrilamidas/química , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Polímeros/química , Animais , Antibióticos Antineoplásicos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/administração & dosagem , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 7(42): 67901-67918, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27661128

RESUMO

In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Vacinas Anticâncer/imunologia , Vacinas de DNA/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , DNA/genética , DNA/imunologia , DNA/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/metabolismo , Sarcoma Experimental/imunologia , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia
16.
Oncotarget ; 7(28): 42844-42858, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27374091

RESUMO

Vascular endothelial growth factor A (VEGF-A) inhibition with pazopanib is an approved therapy for sarcomas, but likely results in compensatory pathways such as upregulation of hypoxia inducible factor 1α (HIF-1α). In addition, cancer stem-like cells can preferentially reside in hypoxic regions of tumors and be resistant to standard chemotherapies. In this study, we hypothesized that the combination of VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy with evofosfamide would be an effective multimodal strategy. Multimodal therapy was examined in one genetically engineered and two xenograft mouse models of sarcoma. In all three models, multimodal therapy showed greater efficacy than any single agent therapy or bimodality therapy in blocking tumor growth. Even after cessation of therapy, tumors treated with multimodal therapy remained relatively dormant for up to 2 months. Compared to the next best bimodality therapy, multimodal therapy caused 2.8-3.3 fold more DNA damage, 1.5-2.7 fold more overall apoptosis, and 2.3-3.6 fold more endothelial cell-specific apoptosis. Multimodal therapy also decreased microvessel density and HIF-1α activity by 85-90% and 79-89%, respectively, compared to controls. Sarcomas treated with multimodal therapy had 95-96% depletion of CD133(+) cancer stem-like ells compared to control tumors. Sarcoma cells grown as spheroids to enrich for CD133(+) cancer stem-like cells were more sensitive than monolayer cells to multimodal therapy in terms of DNA damage and apoptosis, especially under hypoxic conditions. Thus multimodal therapy of sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy effectively blocks sarcoma growth through inhibition of tumor vasculature and cancer stem-like cells.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Sarcoma/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Terapia Combinada , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Interferência de RNA , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Tumour Biol ; 37(10): 13121-13136, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27449046

RESUMO

Colchicine, an antimitotic alkaloid isolated from Colchicum autumnale, is a classical drug for treatment of gout and familial Mediterranean fever. It causes antiproliferative effects through the inhibition of microtubule formation, which leads to mitotic arrest and cell death by apoptosis. Here, we report that a novel colchicine analog, 4o (N-[(7S)-1,2,3-trimethoxy-9-oxo-10-[3-(trifluoromethyl)-4-chlorophenylamino]-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl]acetamide), which exhibited potent anticancer activities both in vitro and in vivo. In this study, 4o with excellent pharmacokinetic profile and no P-gp induction liability displayed strong inhibition of proliferation against various human cancer cell lines. However, pancreatic cancer cell line MIA PaCa-2 was found to be more sensitive towards 4o and showed strong inhibition in concentration and time-dependent manner. By increasing intracellular reactive oxygen species (ROS) levels, 4o induced endoplasmic reticular stress and mitochondrial dysfunction in MIA PaCa-2 cells. Blockage of ROS production reversed 4o-induced endoplasmic reticulum (ER) stress, calcium release, and cell death. More importantly, it revealed that increased ROS generation might be an effective strategy in treating human pancreatic cancer. Further 4o treatment induced mitotic arrest, altered the expression of cell cycle-associated proteins, and disrupted the microtubules in MIA PaCa-2 cells. 4o treatment caused loss of mitochondrial membrane potential, cytochrome c release, upregulation of Bax, downregulation of Bcl-2, and cleavage of caspase-3, thereby showing activation of mitochondrial mediated apoptosis. The in vivo anticancer activity of the compound was studied using sarcoma-180 (ascitic) and leukemia (P388 lymphocytic and L1210 lymphoid) models in mice and showed promising antitumor activity with the least toxicity unlike colchicine. Such studies have hitherto not been reported. Taken together, these findings highlighted that 4o, a potent derivative of colchicine, causes tumor regression with reduced toxicity and provides a novel anticancer candidate for the therapeutic use.


Assuntos
Apoptose/efeitos dos fármacos , Colchicina/farmacologia , Leucemia Experimental/patologia , Microtúbulos/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Sarcoma Experimental/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Técnicas Imunoenzimáticas , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA , Microtúbulos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Moduladores de Tubulina/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 7(21): 30935-50, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27105533

RESUMO

Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Plicamicina/análogos & derivados , Sarcoma Experimental/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Feminino , Imunofluorescência , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Subunidade p50 de NF-kappa B/metabolismo , Plicamicina/farmacocinética , Plicamicina/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 6(28): 24649-59, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26433463

RESUMO

Foxp3(+) regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3(+) T-bet(+) 'TH1-like' Tregs which are thymus-derived Helios(+) cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent. Moreover, we show that the TH1 phenotype of tumor-infiltrating Tregs is dispensable for their ability to influence tumor progression. We did however find that unlike Tconvs, the majority of intra-tumoral Tregs express the activation markers CD69, CD25, ICOS, CD103 and CTLA4 and are significantly more proliferative than Tconvs. Moreover, we have found that CD69(+) Tregs are more suppressive than their CD69- counterparts. Collectively, these data indicate superior activation of Tregs in the tumor microenvironment, promoting their suppressive ability and selective proliferation at this site.


Assuntos
Proliferação de Células , Fibrossarcoma/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Sarcoma Experimental/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibrossarcoma/induzido quimicamente , Fibrossarcoma/genética , Fibrossarcoma/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Metilcolantreno , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sarcoma Experimental/induzido quimicamente , Sarcoma Experimental/genética , Sarcoma Experimental/imunologia , Transdução de Sinais , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Microambiente Tumoral
20.
Nutr Cancer ; 67(5): 713-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879155

RESUMO

Malignancies induce disposal of arginine, an important substrate for the immune system. To sustain immune function, the tumor-bearing host accelerates arginine's intestinal-renal axis by glutamine mobilization from skeletal muscle and this may promote cachexia. Glutamine supplementation stimulates argi-nine production in healthy subjects. Arginine's intestinal-renal axis and the effect of glutamine supplementation in cancer cach-exia have not been investigated. This study evaluated the long-term adaptations of the interorgan pathway for arginine production following the onset of cachexia and the metabolic effect of glutamine supplementation in the cachectic state. Fischer-344 rats were randomly divided into a tumor-bearing group (n = 12), control group (n = 7) and tumor-bearing group receiving a glutamine-enriched diet (n = 9). Amino acid fluxes and net fractional extractions across intestine, kidneys, and liver were studied. Compared to controls, the portal-drained viscera of tumor-bearing rats took up significantly more glutamine and released significantly less citrulline. Renal metabolism was unchanged in the cachectic tumor-bearing rats compared with controls. Glutamine supplementation had no effects on intestinal and renal adaptations. In conclusion, in the cachectic state, an increase in intestinal glutamine uptake is not accompanied by an increase in renal arginine production. The adaptations found in the cachectic, tumor-bearing rat do not depend on glutamine availability.


Assuntos
Arginina/metabolismo , Caquexia/metabolismo , Dieta , Glutamina/administração & dosagem , Mucosa Intestinal/metabolismo , Rim/metabolismo , Sarcoma Experimental/metabolismo , Animais , Arginina/biossíntese , Caquexia/induzido quimicamente , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/fisiopatologia , Masculino , Metilcolantreno , Nutrição Parenteral , Ratos , Ratos Endogâmicos F344 , Circulação Renal/fisiologia , Sarcoma Experimental/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...