Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Physiol Res ; 73(2): 295-304, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710060

RESUMO

Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).


Assuntos
Treino Aeróbico , Janus Quinase 2 , Condicionamento Físico Animal , Fator de Transcrição STAT3 , Sarcopenia , Transdução de Sinais , Animais , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle , Sarcopenia/terapia , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Masculino , Camundongos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Envelhecimento/metabolismo
2.
Aging (Albany NY) ; 16(8): 7141-7152, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643465

RESUMO

Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.


Assuntos
Envelhecimento , Mitofagia , Músculo Esquelético , Espécies Reativas de Oxigênio , Sarcopenia , Receptores alfa dos Hormônios Tireóideos , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Camundongos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias Musculares/metabolismo , Masculino , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Linhagem Celular
3.
Food Funct ; 15(9): 4936-4953, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38602003

RESUMO

Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.


Assuntos
Dexametasona , Suplementos Nutricionais , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Sarcopenia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Sarcopenia/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/induzido quimicamente , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo
4.
Gen Comp Endocrinol ; 353: 114513, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604437

RESUMO

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Assuntos
Caquexia , Atrofia Muscular , Miostatina , Neoplasias , Sarcopenia , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Caquexia/metabolismo , Caquexia/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Transdução de Sinais/fisiologia , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Miostatina/metabolismo , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
5.
Exp Gerontol ; 190: 112428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604253

RESUMO

BACKGROUND: Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS: C2C12 myoblasts were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS: 7ß-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7ß-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION: This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.


Assuntos
Dano ao DNA , Alvo Mecanístico do Complexo 1 de Rapamicina , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases S6 Ribossômicas 90-kDa , Sarcopenia , Sestrinas , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sarcopenia/metabolismo , Camundongos Knockout , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Transdução de Sinais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Músculo Esquelético/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Peroxidases/metabolismo , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo
6.
Arch Pharm Res ; 47(4): 301-324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592582

RESUMO

Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.


Assuntos
Sarcopenia , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/terapia , Humanos , Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miostatina/antagonistas & inibidores , Miostatina/metabolismo , Desenvolvimento de Medicamentos/métodos
7.
Am J Pathol ; 194(5): 759-771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637109

RESUMO

In patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice. In the cultured murine skeletal myocytes, stimulation with indoxyl sulfate (IS), a representative uremic toxin, morphologically jeopardized the differentiation, which was counteracted by L-ascorbic acid (L-AsA) treatment. Transcriptome analysis of cultured myocytes identified a set of genes whose expression was down-regulated by IS stimulation but up-regulated by L-AsA treatment. Gene silencing of myomixer, one of the genes in the set, impaired myocyte fusion during differentiation. By contrast, lentiviral overexpression of myomixer compensated for a hypomorphic phenotype caused by IS treatment. The split-luciferase technique demonstrated that IS stimulation negatively affected early myofusion activity that was rescued by L-AsA treatment. Lastly, in mice with CKD compared with control mice, myomixer expression in the muscle tissue in addition to the muscle weight after the injury was reduced, both of which were restored with L-AsA treatment. Collectively, data showed that the uremic milieu impairs the expression of myomixer and impedes the myofusion process. Considering frequent musculoskeletal injuries in uremic patients, defective myocyte fusion followed by delayed muscle damage recovery could underlie their muscle loss and weakness.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Uremia , Humanos , Animais , Camundongos , Sarcopenia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Uremia/complicações , Insuficiência Renal Crônica/metabolismo
8.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672432

RESUMO

Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.


Assuntos
Sarcopenia , Células Satélites de Músculo Esquelético , Transdução de Sinais , Sarcopenia/metabolismo , Sarcopenia/terapia , Sarcopenia/patologia , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Animais , Mitocôndrias/metabolismo , Envelhecimento/metabolismo , Regeneração , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
9.
Sci Rep ; 14(1): 9798, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684784

RESUMO

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Assuntos
Envelhecimento , Creatina , Músculo Esquelético , Treinamento Resistido , Sarcopenia , Ubiquinona/análogos & derivados , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Animais , Masculino , Ratos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Miogenina/metabolismo , Miogenina/genética , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Pirofosfatases/genética , Pirofosfatases/metabolismo , Antioxidantes/metabolismo , Creatina Quinase/sangue , Ratos Wistar
10.
Biomaterials ; 308: 122551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593710

RESUMO

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Assuntos
Cinesinas , Regeneração , Sarcopenia , Animais , Cinesinas/metabolismo , Camundongos , Sarcopenia/metabolismo , Sarcopenia/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Diferenciação Celular , Desenvolvimento Muscular , Masculino , Transportador de Glucose Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Mitocôndrias/metabolismo , Fenômenos Biomecânicos , Glucose/metabolismo
11.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574975

RESUMO

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Assuntos
Envelhecimento , Músculo Esquelético , Sarcopenia , Animais , Masculino , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Envelhecimento/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Estradiol/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fibrose/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteoma/metabolismo , Fatores Sexuais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia
12.
Dev Biol ; 511: 1-11, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548146

RESUMO

Maintenance of appropriate muscle mass is crucial for physical activity and metabolism. Aging and various pathological conditions can cause sarcopenia, a condition characterized by muscle mass decline. Although sarcopenia has been actively studied, the mechanisms underlying muscle atrophy are not well understood. Thus, we aimed to investigate the role of Phosphatidylserine synthase (Pss) in muscle development and homeostasis in Drosophila. The results showed that muscle-specific Pss knockdown decreased exercise capacity and produced sarcopenic phenotypes. In addition, it increased the apoptosis rate because of the elevated reactive oxygen species production resulting from mitochondrial dysfunction. Moreover, the autophagy rate increased due to increased FoxO activity caused by reduced Akt activity. Collectively, these findings demonstrate that enhanced apoptosis and autophagy rates resulting from muscle-specific Pss knockdown jointly contribute to sarcopenia development, highlighting the key role of the PSS pathway in muscle health.


Assuntos
Apoptose , Proteínas de Drosophila , Drosophila melanogaster , Atrofia Muscular , Espécies Reativas de Oxigênio , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Espécies Reativas de Oxigênio/metabolismo , Autofagia/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia , Sarcopenia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Drosophila/metabolismo , Técnicas de Silenciamento de Genes
13.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504132

RESUMO

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Assuntos
Alcaloides , Sarcopenia , Humanos , Masculino , Camundongos , Animais , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envelhecimento , Músculo Esquelético/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo
14.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542724

RESUMO

This study targeted elderly women over 60 years old (109 persons), divided them into an exercise group and a control group, and implemented a 12-week physical activity program for the exercise group. Body composition, muscle, blood tests, depression, quality of life (QoL), nutritional status, and physical strength were compared and analyzed. The physical activity program was organized through a consultative body of experts, was performed for about 60 min each time in the type and order of exercise appropriate for elderly women, and consisted of a combination of exercise using a band, gymnastics, and stretching. Changes in the muscle index and muscle mass before and after the program were selected as the primary efficacy evaluations. In the exercise group, waist circumference significantly decreased, and the muscle index significantly increased compared to the control group. The number of subjects who showed sarcopenia with a muscle index of 5.4 or less in the exercise group significantly decreased from 22 (38.6%) before program implementation to 13 (22.8%). According to the results of secondary effectiveness evaluation, high-density lipoprotein cholesterol and apolipoprotein (Apo) A were significantly increased in the exercise group compared to the control group, and Apo B, triglyceride, and c-reactive protein showed a significant decrease. Regular physical activity is very important for improving the health and QoL of elderly women, and as a result of applying a customized program, effects such as increased muscle index, improvement of sarcopenia, and improvement of blood lipid status were confirmed. Therefore, it is believed that the physical activity program developed through this study can be applied as a community program for elderly women.


Assuntos
Sarcopenia , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Qualidade de Vida , Força Muscular/fisiologia , Exercício Físico/fisiologia , Estado Nutricional , Composição Corporal/fisiologia , Músculo Esquelético/metabolismo
15.
Food Funct ; 15(7): 3669-3679, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487922

RESUMO

Sarcopenia is a progressive and generalized age-related skeletal muscle (SkM) disorder characterized by the accelerated loss of muscle mass (atrophy) and function. SkM atrophy is associated with increased incidence of falls, functional decline, frailty and mortality. In its early stage, SkM atrophy is associated with increased pro-inflammatory cytokine levels and proteasome-mediated protein degradation. These processes also link to the activation of atrophy associated factors and signaling pathways for which, there is a lack of approved pharmacotherapies. The objective of this study, was to characterize the capacity of the flavanol (+)-epicatechin (+Epi) to favorably modulate SkM mass and function in a rat model of aging induced sarcopenia and profile candidate mechanisms. Using 23 month old male Sprague-Dawley rats, an 8 weeks oral administration of the +Epi (1 mg per kg per day in water by gavage) was implemented while control rats only received water. SkM strength (grip), treadmill endurance, muscle mass, myofiber area, creatine kinase, lactate dehydrogenase, troponin, α-actin, tumor necrosis factor (TNF)-α and atrophy related endpoints (follistatin, myostatin, NFκB, MuRF 1, atrogin 1) were quantified in plasma and/or gastrocnemius. We also evaluated effects on insulin growth factor (IGF)-1 levels and downstream signaling (AKT/mTORC1). Treatment of aged rats with +Epi, led to significant increases in front paw grip strength, treadmill time and SkM mass vs. controls as well as beneficial changes in makers of myofiber integrity. Treatment significantly reversed adverse changes in plasma and/or SkM TNF-α, IGF-1, atrophy and protein synthesis related endpoints vs. controls. In conclusion, +Epi has the capacity to reverse sarcopenia associated detrimental changes in regulatory pathways leading to improved SkM mass and function. Given these results and its recognized safety and tolerance profile, +Epi warrants consideration for clinical trials.


Assuntos
Catequina , Sarcopenia , Masculino , Ratos , Animais , Sarcopenia/metabolismo , Catequina/farmacologia , Roedores , Ratos Sprague-Dawley , Envelhecimento , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Água/metabolismo
16.
Exp Mol Med ; 56(4): 904-921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556548

RESUMO

Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.


Assuntos
Autofagia , Transcriptoma , Animais , Autofagia/efeitos dos fármacos , Camundongos , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Perfilação da Expressão Gênica , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
17.
Acta Physiol (Oxf) ; 240(3): e14107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304924

RESUMO

Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.


Assuntos
Sarcopenia , Humanos , Sarcopenia/etiologia , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Atrofia Muscular/metabolismo
18.
Curr Opin Clin Nutr Metab Care ; 27(3): 234-243, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391396

RESUMO

PURPOSE OF REVIEW: Sarcopenia is a wasting disease, mostly age-related in which muscle strength and mass decline, such as physical performance. With aging, both lower dietary protein intake and anabolic resistance lead to sarcopenia. Moreover, aging and sarcopenia display low-grade inflammation, which also worsen muscle condition. In this review, we focused on these two main targets to study dietary strategies. RECENT FINDINGS: The better understanding in mechanisms involved in sarcopenia helps building combined dietary approaches including physical activity that would slow the disease progression. New approaches include better understanding in the choice of quality proteins, their amount and schedule and the association with antioxidative nutrients. SUMMARY: First, anabolic resistance can be countered by increasing significantly protein intake. If increasing amount remains insufficient, the evenly delivery protein schedule provides interesting results on muscle strength. Quality of protein is also to consider for decreasing risk for sarcopenia, because varying sources of proteins appears relevant with increasing plant-based proteins ratio. Although new techniques have been developed, as plant-based proteins display a lower availability, we need to ensure an adapted overall amount of proteins. Finally, specific enrichment with leucine from whey protein remains the dietary combined approach most studied and studies on citrulline provide interesting results. As cofactor at the edge between anabolic and antioxidative properties, vitamin D supplementation is to recommend. Antioxidative dietary strategies include both fibers, vitamins, micronutrients and polyphenols from various sources for positive effects on physical performance. The ω 3 -polyunsaturated fatty acids also display positive modifications on body composition. Gut microbiota modifiers, such as prebiotics, are promising pathways to improve muscle mass and function and body composition in sarcopenic patients. Nutritional interventions could be enhanced by combination with physical activity on sarcopenia. In healthy older adults, promoting change in lifestyle to get near a Mediterranean diet could be one of the best options. In sarcopenia adults in which lifestyle changes appears unprobable, specific enrichement potentialized with physical activity will help in the struggle against sarcopenia. Longitudinal data are lacking, which makes it hard to draw strong conclusions. However, the effects of a physical activity combined with a set of nutrition interventions on sarcopenia seems promising.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Proteínas Alimentares/metabolismo , Músculo Esquelético/metabolismo , Vitaminas/farmacologia , Dieta , Força Muscular , Antioxidantes/farmacologia , Suplementos Nutricionais
19.
Drugs Aging ; 41(2): 83-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315328

RESUMO

Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.


Assuntos
Sarcopenia , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Envelhecimento/patologia , Exercício Físico/fisiologia , Inflamação , Preparações Farmacêuticas , Músculo Esquelético
20.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396729

RESUMO

Sarcopenia, the age-associated decline in skeletal muscle mass and strength, is a condition with a complex pathophysiology. Among the factors underlying the development of sarcopenia are the progressive demise of motor neurons, the transition from fast to slow myosin isoform (type II to type I fiber switch), and the decrease in satellite cell number and function. Mitochondrial dysfunction has been indicated as a key contributor to skeletal myocyte decline and loss of physical performance with aging. Several systems have been implicated in the regulation of muscle plasticity and trophism such as the fine-tuned and complex regulation between the stimulator of protein synthesis, mechanistic target of rapamycin (mTOR), and the inhibitor of mTOR, AMP-activated protein kinase (AMPK), that promotes muscle catabolism. Here, we provide an overview of the molecular mechanisms linking mitochondrial signaling and quality with muscle homeostasis and performance and discuss the main pathways elicited by their imbalance during age-related muscle wasting. We also discuss lifestyle interventions (i.e., physical exercise and nutrition) that may be exploited to preserve mitochondrial function in the aged muscle. Finally, we illustrate the emerging possibility of rescuing muscle tissue homeostasis through mitochondrial transplantation.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...