Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4446, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915115

RESUMO

The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-ß pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded ß-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase.


Assuntos
Doença Celíaca , Animais , Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Precursores Enzimáticos , Gliadina/química , Gliadina/metabolismo , Ácido Glutâmico , Glutens/química , Camundongos , Prolil Oligopeptidases , Sarraceniaceae/enzimologia
2.
Anal Chem ; 92(16): 11018-11028, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32658454

RESUMO

Hydrogen/Deuterium Exchange (HDX) coupled with Mass Spectrometry (HDX-MS) is a sensitive and robust method to probe protein conformational changes and protein-ligand interactions. HDX-MS relies on successful proteolytic digestion of target proteins under acidic conditions to localize perturbations in exchange behavior to protein structure. The ability of the protease to produce small peptides and overlapping fragments and provide sufficient coverage of the protein sequence is essential for localizing regions of interest. While the acid protease pepsin has been the enzyme of choice for HDX-MS studies, recently, it was shown that aspartic proteases from carnivorous pitcher plants of the genus Nepenthes are active under low-pH conditions and cleave at basic residues that are "forbidden" in peptic digests. In this report, we describe the utility of one of these enzymes, Nepenthesin II (NepII), in a HDX-MS workflow. A systematic and statistical analysis of data from 11 proteins (6391 amino acid residues) digested with immobilized porcine pepsin or NepII under conditions compatible with HDX-MS was performed to examine protease cleavage specificities. The cleavage of pepsin was most influenced by the amino acid residue at position P1. Phe, Leu, and Met are favored residues, each with a cleavage probability of greater than 40%. His, Lys, Arg, or Pro residues prohibit cleavage when found at the P1 position. In contrast, NepII offers advantageous cleavage to all basic residues and produces shortened peptides that could improve the spatial resolution in HDX-MS studies.


Assuntos
Enzimas Imobilizadas/química , Pepsina A/química , Proteólise , Animais , Biocatálise , Deutério/química , Medição da Troca de Deutério , Espectrometria de Massas , Sarraceniaceae/enzimologia , Especificidade por Substrato , Suínos
3.
Sci Rep ; 10(1): 6575, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313042

RESUMO

Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.


Assuntos
Metabolismo Energético/genética , Proteínas de Plantas/genética , Sarraceniaceae/genética , Transcriptoma/genética , Sequência de Aminoácidos/genética , Animais , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA-Seq , Sarraceniaceae/enzimologia , Sarraceniaceae/crescimento & desenvolvimento
4.
PLoS One ; 12(7): e0181252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719666

RESUMO

Carnivory in pitcher plants generally involves digestion of prey, by the plant itself, by symbionts, or both. While symbionts appear to be important in the digestion of prey in Sarracenia purpurea, the importance of pitcher-derived enzymes is less well documented. Our goal was to reduce microbial numbers in pitcher fluid in order to measure the acid phosphatase activity attributable to the pitchers themselves. Preliminary experiments indicated that various antibiotics were minimally effective at reducing microbial populations and that antibiotic-resistant microbes were easily cultured from pitcher fluid. Consequently, we measured the abundance of culturable microbes in every sample taken for the measurement of acid phosphatase activity. Pitchers fed with one sterilized ant had higher levels of acid phosphatase activity than unfed pitchers. Older pitchers were more responsive to feeding than young pitchers. Pitchers with high levels of microbes (on Day 5) had higher acid phosphatase activity than pitchers with low levels of microbes. However, fed pitchers were not more likely to have higher microbe levels and microbe levels were not related to pitcher age. When fluid samples from inside the pitcher were compared to appropriate controls incubated outside the pitcher, acid phosphatase activity was higher inside the pitcher. Results from the feeding experiments are consistent with a primary role of microbes in the digestion of prey in pitchers of S. purpurea. However, the relationship between pitcher age and enzyme activity is not a function of microbes in the pitcher fluid and may depend on enzymes produced by the plant. Our methods would not detect microbes embedded on the inner surface of the pitcher; and if they survived the alcohol rinse and antibiotics, we cannot rule out microbes as the source of the relationship between pitcher age and acid phosphatase activity.


Assuntos
Fosfatase Ácida/metabolismo , Envelhecimento , Sarraceniaceae/enzimologia , Sarraceniaceae/microbiologia , Carnivoridade , Sarraceniaceae/fisiologia
5.
J Proteome Res ; 15(9): 3108-17, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436081

RESUMO

Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.


Assuntos
Sarraceniaceae/enzimologia , Animais , Digestão , Enzimas/análise , Comportamento Alimentar , Biblioteca Gênica , Insetos/metabolismo , Espectrometria de Massas , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteoma/análise , Sarraceniaceae/metabolismo
6.
Planta ; 240(1): 147-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24771022

RESUMO

Although the S-like ribonucleases (RNases) share sequence homology with the S-RNases involved in the self-incompatibility mechanism in plants, they are not associated with this mechanism. They usually function in stress responses in non-carnivorous plants and in carnivory in carnivorous plants. In this study, we clarified the structures of the S-like RNases of Aldrovanda vesiculosa, Nepenthes bicalcarata and Sarracenia leucophylla, and compared them with those of other plants. At ten positions, amino acid residues are conserved or almost conserved only for carnivorous plants (six in total). In contrast, two positions are specific to non-carnivorous plants. A phylogenetic analysis revealed that the S-like RNases of the carnivorous plants form a group beyond the phylogenetic relationships of the plants. We also prepared and characterized recombinant S-like RNases of Dionaea muscipula, Cephalotus follicularis, A. vesiculosa, N. bicalcarata and S. leucophylla, and RNS1 of Arabidopsis thaliana. The recombinant carnivorous plant enzymes showed optimum activities at about pH 4.0. Generally, poly(C) was digested less efficiently than poly(A), poly(I) and poly(U). The kinetic parameters of the recombinant D. muscipula enzyme (DM-I) and A. thaliana enzyme RNS1 were similar. The k cat/K m of recombinant RNS1 was the highest among the enzymes, followed closely by that of recombinant DM-I. On the other hand, the k cat/K m of the recombinant S. leucophylla enzyme was the lowest, and was ~1/30 of that for recombinant RNS1. The magnitudes of the k cat/K m values or k cat values for carnivorous plant S-like RNases seem to correlate negatively with the dependency on symbionts for prey digestion.


Assuntos
Magnoliopsida/enzimologia , Ribonucleases/genética , Sequência de Aminoácidos , Droseraceae/enzimologia , Droseraceae/genética , Ácido Edético , Concentração de Íons de Hidrogênio , Cinética , Magnoliopsida/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Ribonucleases/química , Ribonucleases/metabolismo , Sarraceniaceae/enzimologia , Sarraceniaceae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura
7.
Planta ; 238(5): 955-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959189

RESUMO

Functions of S-like ribonucleases (RNases) differ considerably from those of S-RNases that function in self-incompatibility. Expression of S-like RNases is usually induced by low nutrition, vermin damage or senescence. However, interestingly, an Australian carnivorous plant Drosera adelae (a sundew), which traps prey with a sticky digestive liquid, abundantly secretes an S-like RNase DA-I in the digestive liquid even in ordinary states. Here, using D. adelae, Dionaea muscipula (Venus flytrap) and Cephalotus follicularis (Australian pitcher plant), we show that carnivorous plants use S-like RNases for carnivory: the gene da-I encoding DA-I and its ortholog cf-I of C. follicularis are highly expressed and constitutively active in each trap/digestion organ, while the ortholog dm-I of D. muscipula becomes highly active after trapping insects. The da-I promoter is unmethylated only in its trap/digestion organ, glandular tentacles (which comprise a small percentage of the weight of the whole plant), but methylated in other organs, which explains the glandular tentacles-specific expression of the gene and indicates a very rare gene regulation system. In contrast, the promoters of dm-I, which shows induced expression, and cf-I, which has constitutive expression, were not methylated in any organs examined. Thus, it seems that the regulatory mechanisms of the da-I, dm-I and cf-I genes differ from each other and do not correlate with the phylogenetic relationship. The current study suggests that under environmental pressure in specific habitats carnivorous plants have managed to evolve their S-like RNase genes to function in carnivory.


Assuntos
Drosera/enzimologia , Drosera/genética , Regulação da Expressão Gênica de Plantas , Ribonucleases/genética , Sarraceniaceae/enzimologia , Sarraceniaceae/genética , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Western Blotting , Metilação de DNA/genética , Regulação Enzimológica da Expressão Gênica , Genes de Plantas/genética , Modelos Genéticos , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ribonucleases/química , Ribonucleases/metabolismo , Homologia de Sequência de Aminoácidos
8.
PLoS One ; 6(9): e25144, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949872

RESUMO

The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, ß-D-glucosidases, and ß-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.


Assuntos
Fosfatase Ácida/metabolismo , Glucosidases/metabolismo , Hexosaminidases/metabolismo , Sarraceniaceae/enzimologia , Sarraceniaceae/microbiologia , Filtração , Material Particulado
9.
J Exp Bot ; 62(13): 4639-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21633084

RESUMO

Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands' surrounding tissue. These results suggest that in the pitchers' tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins.


Assuntos
Carnivoridade/fisiologia , Quitinases/metabolismo , Proteínas de Plantas/metabolismo , Sarraceniaceae/anatomia & histologia , Sarraceniaceae/enzimologia , Sequência de Aminoácidos , Quitinases/química , Quitinases/genética , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
Biosci Biotechnol Biochem ; 74(11): 2323-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21071863

RESUMO

Nepenthesin, an aspartic endopeptidase from the pitcher fluid of Nepenthes, was found to be markedly less stable than porcine pepsin A when treated with urea or guanidine hydrochloride. This is in sharp contrast with its remarkably high pH/temperature stability as compared with porcine pepsin A. No protein with such a stability profile has been reported to date.


Assuntos
Ácido Aspártico Endopeptidases/química , Estabilidade Enzimática , Pepsina A/química , Sarraceniaceae/enzimologia , Animais , Estabilidade Enzimática/efeitos dos fármacos , Guanidina/farmacologia , Concentração de Íons de Hidrogênio , Proteínas de Plantas , Desnaturação Proteica/efeitos dos fármacos , Suínos , Temperatura , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...