Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Microbiol ; 24(8): 3500-3516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384233

RESUMO

Plant-associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affects microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co-occurring species of Sarracenia pitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples from S. purpurea in Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co-occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally occurring hybrids appear to also host unique communities, which are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, in Sarracenia pitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms.


Assuntos
Microbiota , Sarraceniaceae , Bactérias/genética , Eucariotos , Geografia , Microbiota/genética , Sarraceniaceae/genética , Sarraceniaceae/microbiologia
2.
Microbiol Spectr ; 9(3): e0069621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817222

RESUMO

The interconnected and overlapping habitats present in natural ecosystems remain a challenge in determining the forces driving microbial community composition. The cuplike leaf structures of some carnivorous plants, including those of the family Sarraceniaceae, are self-contained ecological habitats that represent systems for exploring such microbial ecology questions. We investigated whether Sarracenia minor and Sarracenia flava cultivate distinct bacterial communities when sampled at the same geographic location and time. This sampling strategy eliminates many abiotic environmental variables present in other studies that compare samples harvested over time, and it could reveal biotic factors driving the selection of microbes. DNA extracted from the decomposing detritus trapped in each Sarracenia leaf pitcher was profiled using 16S rRNA amplicon sequencing. We identified a surprising amount of bacterial diversity within each pitcher, but we also discovered bacteria whose abundance was specifically enriched in one of the two Sarracenia species. These differences in bacterial community representation suggest some biotic influence of the Sarracenia plant on the bacterial composition of their pitchers. Overall, our results suggest that bacterial selection due to factors other than geographic location, weather, or prey availability is occurring within the pitchers of these two closely related plant species. This indicates that specific characteristics of S. minor and S. flava may play a role in fostering distinct bacterial communities. These confined, naturally occurring microbial ecosystems within Sarracenia pitchers may provide model systems to answer important questions about the drivers of microbial community composition, succession, and response to environmental perturbations. IMPORTANCE This study uses amplicon sequencing to compare the bacterial communities of environmental samples from the detritus of the leaf cavities of Sarracenia minor and Sarracenia flava pitcher plants. We sampled the detritus at the same time and in the same geographic location, eliminating many environmental variables present in other comparative studies. This study revealed that different species of Sarracenia contain distinct bacterial members within their pitchers, suggesting that these communities are not randomly established based on environmental factors and the prey pool but are potentially enriched for by the plants' chemical or physical environment. This study of these naturally occurring, confined microbial ecosystems will help further establish carnivorous pitcher plants as a model system for answering important questions about the development and succession of microbial communities.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Sarraceniaceae/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , Filogenia , Folhas de Planta/microbiologia , Sarraceniaceae/classificação
3.
Nat Commun ; 11(1): 1440, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188849

RESUMO

Niche construction through interspecific interactions can condition future community states on past ones. However, the extent to which such history dependency can steer communities towards functionally different states remains a subject of active debate. Using bacterial communities collected from wild pitchers of the carnivorous pitcher plant, Sarracenia purpurea, we test the effects of history on composition and function across communities assembled in synthetic pitcher plant microcosms. We find that the diversity of assembled communities is determined by the diversity of the system at early, pre-assembly stages. Species composition is also contingent on early community states, not only because of differences in the species pool, but also because the same species have different dynamics in different community contexts. Importantly, compositional differences are proportional to differences in function, as profiles of resource use are strongly correlated with composition, despite convergence in respiration rates. Early differences in community structure can thus propagate to mature communities, conditioning their functional repertoire.


Assuntos
Microbiota/genética , Análise de Sequência de DNA , Biodiversidade , Dióxido de Carbono/metabolismo , Sarraceniaceae/microbiologia , Especificidade da Espécie
4.
Sci Rep ; 9(1): 18286, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797904

RESUMO

Dispersal is key for maintaining biodiversity at local- and regional scales in metacommunities. However, little is known about the combined effects of dispersal and climate change on biodiversity. Theory predicts that alpha-diversity is maximized at intermediate dispersal rates, resulting in a hump-shaped diversity-dispersal relationship. This relationship is predicted to flatten when competition increases. We anticipate that this same flattening will occur with increased temperature because, in the rising part of the temperature performance curve, interspecific competition is predicted to increase. We explored this question using aquatic communities of Sarracenia purpurea from early- and late-successional stages, in which we simulated four levels of dispersal and four temperature scenarios. With increased dispersal, the hump shape was observed consistently in late successional communities, but only in higher temperature treatments in early succession. Increased temperature did not flatten the hump-shape relationship, but decreased the level of alpha- and gamma-diversity. Interestingly, higher temperatures negatively impacted small-bodied species. These metacommunity-level extinctions likely relaxed interspecific competition, which could explain the absence of flattening of the diversity-dispersal relationship. Our findings suggest that climate change will cause extinctions both at local- and global- scales and emphasize the importance of intermediate levels of dispersal as an insurance for local diversity.


Assuntos
Biodiversidade , Microbiota , Sarraceniaceae/microbiologia , Mudança Climática , Dinâmica Populacional , Temperatura
5.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635382

RESUMO

A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser: it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession.IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.


Assuntos
Fungos/crescimento & desenvolvimento , Microbiota , Sarraceniaceae/microbiologia , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação
6.
Microb Ecol ; 76(4): 885-898, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29679120

RESUMO

Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Cadeia Alimentar , Insetos/fisiologia , Sarraceniaceae/microbiologia , Animais , Wisconsin
7.
PLoS One ; 12(7): e0181252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719666

RESUMO

Carnivory in pitcher plants generally involves digestion of prey, by the plant itself, by symbionts, or both. While symbionts appear to be important in the digestion of prey in Sarracenia purpurea, the importance of pitcher-derived enzymes is less well documented. Our goal was to reduce microbial numbers in pitcher fluid in order to measure the acid phosphatase activity attributable to the pitchers themselves. Preliminary experiments indicated that various antibiotics were minimally effective at reducing microbial populations and that antibiotic-resistant microbes were easily cultured from pitcher fluid. Consequently, we measured the abundance of culturable microbes in every sample taken for the measurement of acid phosphatase activity. Pitchers fed with one sterilized ant had higher levels of acid phosphatase activity than unfed pitchers. Older pitchers were more responsive to feeding than young pitchers. Pitchers with high levels of microbes (on Day 5) had higher acid phosphatase activity than pitchers with low levels of microbes. However, fed pitchers were not more likely to have higher microbe levels and microbe levels were not related to pitcher age. When fluid samples from inside the pitcher were compared to appropriate controls incubated outside the pitcher, acid phosphatase activity was higher inside the pitcher. Results from the feeding experiments are consistent with a primary role of microbes in the digestion of prey in pitchers of S. purpurea. However, the relationship between pitcher age and enzyme activity is not a function of microbes in the pitcher fluid and may depend on enzymes produced by the plant. Our methods would not detect microbes embedded on the inner surface of the pitcher; and if they survived the alcohol rinse and antibiotics, we cannot rule out microbes as the source of the relationship between pitcher age and acid phosphatase activity.


Assuntos
Fosfatase Ácida/metabolismo , Envelhecimento , Sarraceniaceae/enzimologia , Sarraceniaceae/microbiologia , Carnivoridade , Sarraceniaceae/fisiologia
8.
ISME J ; 11(11): 2439-2451, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28644442

RESUMO

Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.


Assuntos
Bactérias/isolamento & purificação , Folhas de Planta/microbiologia , Sarraceniaceae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodiversidade , Ecossistema , Evolução Molecular , Modelos Biológicos , Estações do Ano
9.
Biol Lett ; 13(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28250210

RESUMO

The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host.


Assuntos
Dípteros/fisiologia , Microbiota/fisiologia , Nitrogênio/análise , Sarraceniaceae/microbiologia , Sarraceniaceae/fisiologia , Compostos de Amônio/metabolismo , Animais , Ecossistema , Larva/fisiologia , Proteínas de Plantas/metabolismo , Simbiose
10.
Biol Lett ; 12(11)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27881762

RESUMO

Bacteria are hypothesized to provide a variety of beneficial functions to plants. Many carnivorous pitcher plants, for example, rely on bacteria for digestion of captured prey. This bacterial community may also be responsible for the low surface tensions commonly observed in pitcher plant digestive fluids, which might facilitate prey capture. I tested this hypothesis by comparing the physical properties of natural pitcher fluid from the pitcher plant Darlingtonia californica and cultured 'artificial' pitcher fluids and tested these fluids' prey retention capabilities. I found that cultures of pitcher leaves' bacterial communities had similar physical properties to raw pitcher fluids. These properties facilitated the retention of insects by both fluids and hint at a previously undescribed class of plant-microbe interaction.


Assuntos
Fenômenos Fisiológicos Bacterianos , Insetos , Sarraceniaceae/microbiologia , Animais , Bactérias , Folhas de Planta/microbiologia , Tensão Superficial , Simbiose
11.
Proc Biol Sci ; 283(1838)2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629035

RESUMO

Biodiversity-ecosystem function (BEF) experiments routinely employ common garden designs, drawing samples from a local biota. The communities from which taxa are sampled may not, however, be at equilibrium. To test for temporal changes in BEF relationships, I assembled the pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica in order to evaluate the strength, direction and drivers of the BEF relationship across a natural host-associated successional gradient. I constructed experimental communities using bacterial isolates from each time point and measured their respiration rates and competitive interactions. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.


Assuntos
Bactérias/classificação , Biodiversidade , Ecossistema , Sarraceniaceae/microbiologia , Dinâmica Populacional
12.
Int J Syst Evol Microbiol ; 66(11): 4480-4485, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498537

RESUMO

Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.


Assuntos
Mycobacterium/classificação , Filogenia , Sarraceniaceae/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Minnesota , Mycobacterium/genética , Mycobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
PLoS One ; 9(11): e113384, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423622

RESUMO

The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.


Assuntos
Cilióforos/parasitologia , Folhas de Planta/microbiologia , Sarraceniaceae/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Cilióforos/crescimento & desenvolvimento , Folhas de Planta/parasitologia , RNA Ribossômico 16S/genética , Sarraceniaceae/parasitologia
14.
Ann Bot ; 111(3): 375-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23264234

RESUMO

BACKGROUND AND AIMS: Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. METHODS: Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. KEY RESULTS: The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. CONCLUSIONS: The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients.


Assuntos
Exsudatos de Plantas/análise , Pseudomonas syringae/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sarraceniaceae/química , Sarraceniaceae/microbiologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Artrópodes , Cromatografia por Troca Iônica , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes de RNAr , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Naftoquinonas/análise , Naftoquinonas/química , Nitrogênio/análise , Nitrogênio/química , Exsudatos de Plantas/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Pseudomonas syringae/genética , RNA Ribossômico 16S/análise , Saccharomyces cerevisiae/genética , Sarraceniaceae/fisiologia , Especificidade da Espécie
15.
PLoS One ; 7(12): e50969, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227224

RESUMO

The leaves of the carnivorous pitcher plant, Sarracenia purpurea, contain a microscopic aquatic food web that is considered a model system in ecological research. The species identity of the intermediate and top trophic level of this food web, as well the detritivore midge, are highly similar across the native geographic range of S. purpurea and, in some cases, appear to have co-evolved with the plant. However, until recently, the identity, geographic variation, and diversity of the bacteria in the bottom trophic level of this food web have remained largely unknown. This study investigated bacterial community composition inside the leaves of S. purpurea to address: 1) variation in bacterial communities at the beginning of succession at the local scale in different areas of the plant's native geographic range (southern and mid-regional sites) and 2) the impacts of bacterial consumers and other members of the aquatic food web (i.e., insects) on bacterial community structure. Communities from six leaves (one leaf per plant) from New York and Florida study sites were analyzed using 16S ribosomal RNA gene cloning. Each pitcher within each site had a distinct community; however, there was more overlap in bacterial composition within each site than when communities were compared across sites. In contrast, the identity of protozoans and metazoans in this community were similar in species identity both within a site and between the two sites, but abundances differed. Our results indicate that, at least during the beginning of succession, there is no strong selection for bacterial taxa and that there is no core group of bacteria required by the plant to start the decomposition of trapped insects. Co-evolution between the plant and bacteria appears to not have occurred as it has for other members of this community.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Cadeia Alimentar , Modelos Biológicos , Sarraceniaceae/microbiologia , Organismos Aquáticos , Bactérias/genética , Sequência de Bases , Florida , Biblioteca Gênica , Dados de Sequência Molecular , New York , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Áreas Alagadas
16.
PLoS One ; 7(3): e32980, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427921

RESUMO

Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Endófitos/genética , Sarraceniaceae/microbiologia , Simbiose , Sequência de Bases , Biologia Computacional , DNA Espaçador Ribossômico/genética , Espécies em Perigo de Extinção , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sudeste dos Estados Unidos , Especificidade da Espécie
17.
Can J Microbiol ; 58(2): 189-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22263906

RESUMO

Carnivorous plants of the genus Sarracenia rely on microorganisms in their pitchers to decompose drowned insects. The environment inside pitchers is considered to be aerobic; however, there might be zones, such as at the bottom of the pitcher, where anaerobic conditions develop. Samples of the sediment at the bottom of Sarracenia purpurea pitchers were analyzed for the presence of archaea, using PCR and sequencing of the 16S rRNA gene. Archaeal DNA was detected in 20% of sampled pitchers. All sequences were closely related to Methanobrevibacter . Therefore, pitchers may contain anoxic zones inhabited by methanogens.


Assuntos
Archaea/crescimento & desenvolvimento , Metano/metabolismo , Sarraceniaceae/microbiologia , Animais , Archaea/isolamento & purificação , Sequência de Bases , DNA Arqueal , Ecossistema , Dados de Sequência Molecular , Sarraceniaceae/fisiologia , Simbiose
18.
FEMS Microbiol Ecol ; 79(3): 555-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22092381

RESUMO

Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S. purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats.


Assuntos
Bactérias/classificação , Biodiversidade , Ecossistema , Sarraceniaceae/microbiologia , Bactérias/genética , Sequência de Bases , Cadeia Alimentar , Dados de Sequência Molecular , RNA Ribossômico 16S , Áreas Alagadas
19.
PLoS One ; 6(9): e25144, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949872

RESUMO

The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, ß-D-glucosidases, and ß-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.


Assuntos
Fosfatase Ácida/metabolismo , Glucosidases/metabolismo , Hexosaminidases/metabolismo , Sarraceniaceae/enzimologia , Sarraceniaceae/microbiologia , Filtração , Material Particulado
20.
PLoS One ; 6(5): e20672, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673992

RESUMO

Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.


Assuntos
Biodiversidade , Biota , Ecossistema , Cadeia Alimentar , Animais , Biomassa , Culicidae/fisiologia , Euglenozoários/fisiologia , Dinâmica Populacional , Comportamento Predatório , Sarraceniaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...