Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 19(9): e1900105, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386305

RESUMO

Polymeric microcapsules have begun to attract significant interest in biomedical fields. As the interactions between cells and materials are influenced by both cell type and elasticity, silk-based microcapsules are synthesized with desirable mechanical features using layer-by-layer assembly and then the uptake of these microcapsules by BeWo b30 placental cells is investigated. Cellular uptake is enhanced with increasing of elastic modulus of the silk-based microcapsules. More importantly, the distinct microvilli of these cells behaves in a diverse manner when exposed to microcapsules with different mechanical features, including grabbing (rigidity) or random touching (soft) behavior; these factors affect the final uptake. Inspired by oocyte pickup, the grabbing behavior of the microvilli may provide valuable information with which to elucidate the specific characteristics of uptake between cells and man-made particles, particularly in the reproductive system.


Assuntos
Cápsulas/metabolismo , Placenta/citologia , Seda/metabolismo , Cápsulas/síntese química , Linhagem Celular , Feminino , Humanos , Microvilosidades/metabolismo , Gravidez , Seda/síntese química , Solventes , Eletricidade Estática
2.
Carbohydr Polym ; 212: 403-411, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832874

RESUMO

Developing biomaterials based on the natural biomacromolecule silk sericin from Bombyx mori cocoon is of great interest for biomedical application. Dialdehyde carboxymethyl cellulose (DCMC) is derived from periodate oxidation of carboxy- methyl cellulose. Here, we developed a novel strategy of cross-linking of sericin with DCMC via the Schiff's base reaction. Fourier transform infrared spectroscopy and scanning electron microscopy indicated the formation of Schiff's base via the blending of sericin and DCMC. The mechanical properties tests suggested the covalent cross-linking effectively enhanced the tensile strength of sericin. The swelling test and water contact angle indicated the DCMC/SS film had excellent hydrophilicity, swellability. Additionally, we demonstrated the DCMC/SS film had excellent blood compatibility, cytocompatibility and promoting cell proliferation activity by the hemolysis ratio analysis, cell adhesion, cells viability and proliferation assays. The prepared DCMC/SS film has shown great promise in biomedical applications such as wound dressing, artificial skin and tissue engineering.


Assuntos
Carboximetilcelulose Sódica/síntese química , Celulose/análogos & derivados , Reagentes de Ligações Cruzadas/síntese química , Sericinas/síntese química , Seda/síntese química , Animais , Bandagens , Bombyx , Carboximetilcelulose Sódica/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Celulose/síntese química , Celulose/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacologia , Camundongos , Células NIH 3T3 , Sericinas/farmacologia , Seda/farmacologia , Engenharia Tecidual/tendências
3.
Biomaterials ; 145: 44-55, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28843732

RESUMO

Continuous gradients present at tissue interfaces such as osteochondral systems, reflect complex tissue functions and involve changes in extracellular matrix compositions, cell types and mechanical properties. New and versatile biomaterial strategies are needed to create suitable biomimetic engineered grafts for interfacial tissue engineering. Silk protein-based composites, coupled with selective peptides with mineralization domains, were utilized to mimic the soft-to-hard transition in osteochondral interfaces. The gradient composites supported tunable mineralization and mechanical properties corresponding to the spatial concentration gradient of the mineralization domains (R5 peptide). The composite system exhibited continuous transitions in terms of composition, structure and mechanical properties, as well as cytocompatibility and biodegradability. The gradient silicified silk/R5 composites promoted and regulated osteogenic differentiation of human mesenchymal stem cells in an osteoinductive environment in vitro. The cells differentiated along the composites in a manner consistent with the R5-gradient profile. This novel biomimetic gradient biomaterial design offers a useful approach to meet a broad range of needs in regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Biomimética , Dióxido de Silício/química , Seda/química , Seda/síntese química , Engenharia Tecidual/métodos , Animais , Bombyx , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Osteogênese , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Seda/ultraestrutura , Estresse Mecânico
4.
Biomacromolecules ; 18(4): 1127-1133, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28226209

RESUMO

In the last years, there has been an increasing interest in bioinspired approaches for different applications, including the spinning of high performance silk fibers. Bioinspired spinning is based on the natural spinning system of spiders and worms and requires combining changes in the chemical environment of the proteins with the application of mechanical stresses. Here we present the novel straining flow spinning (SFS) process and prove its ability to produce high performance fibers under mild, environmentally friendly conditions, from aqueous protein dopes. SFS is shown to be an extremely versatile technique which allows controlling a large number of processing parameters. This ample set of parameters allows fine-tuning the microstructure and mechanical behavior of the fibers, which opens the possibility of adapting the fibers to their intended uses.


Assuntos
Materiais Biomiméticos/síntese química , Seda/síntese química , Animais , Estrutura Molecular , Estresse Mecânico
5.
Subcell Biochem ; 82: 527-573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101872

RESUMO

Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.


Assuntos
Proteínas Recombinantes/síntese química , Seda/química , Seda/síntese química , Animais , Engenharia de Proteínas/métodos , Engenharia de Proteínas/tendências
6.
Sci Rep ; 6: 28106, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312998

RESUMO

Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2-the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Seda/química , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/síntese química , Engenharia Biomédica , Portadores de Fármacos/síntese química , Extração Líquido-Líquido/métodos , Microscopia Eletrônica de Varredura , Estrutura Secundária de Proteína , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Seda/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Mater Sci Mater Med ; 27(2): 37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704554

RESUMO

Recent studies have demonstrated that combining cells with meshes prior to implantation successfully enhanced hernia repair. The idea is to create a biologic coating surrounding the mesh with autologous cells, before transplantation into the patient. However, due to the lack of a prompt and robust cell adhesion to the meshes, extensive in vitro cultivation is required to obtain a homogenous cell layer covering the mesh. In this context, the objective of this publication is to manufacture meshes made of silk fibres and to enhance the cytoadhesion and cytocompatibility of the biomaterial by surface immobilization of a pro-adhesive wheat germ agglutinin (lectin WGA). We first investigated the affinity between the glycoprotein WGA and cells, in solution and then after covalent immobilization of WGA on silk films. Then, we manufactured meshes made of silk fibres, tailored them with WGA grafting and finally evaluated the cytocompatibility and the inflammatory response of silk and silk-lectin meshes compared to common polypropylene mesh, using fibroblasts and peripheral blood mononuclear cells, respectively. The in vitro experiments revealed that the cytocompatibility of silk can be enhanced by surface immobilization with lectin WGA without exhibiting negative response in terms of pro-inflammatory reaction. Grafting lectin to silk meshes could bring advantages to facilitate cell-coating of meshes prior to implantation, which is an imperative prerequisite for abdominal wall tissue regeneration using cell-based therapy.


Assuntos
Materiais Biocompatíveis/síntese química , Terapia Baseada em Transplante de Células e Tecidos , Herniorrafia , Microtecnologia/métodos , Seda/química , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/química , Bombyx , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Terapia Baseada em Transplante de Células e Tecidos/métodos , Herniorrafia/instrumentação , Herniorrafia/métodos , Humanos , Teste de Materiais , Camundongos , Células NIH 3T3 , Projetos Piloto , Seda/síntese química
8.
J Biosci ; 40(3): 645-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26333408

RESUMO

Genetic engineering of the silkworm, Bombyx mori, opens door to the production of new kinds of silk and to the use of silkworms as proteosynthetic bioreactors. The insertion of foreign genes into silkworm genome and the control of their expression by diverse promoters have become possible but are not yet efficient enough for commercial use. Several methods of gene targeting are being developed to minimize position effect on transgene expression and facilitate cloning. Parthenocloning can be exploited to conserve genetic traits and improve selection and amplification of clones containing genes of interest. Some silkworm clones have been bred for decades as genetically stable female stocks whose unfertilized eggs are induced to develop by heat-shock treatment. Any exclusively female generation contains exact copies of the maternal clone-founder genome. Ovaries transplanted in either direction between the standard and the parthenogenetic genotypes yield eggs capable of parthenocloning. In addition, use ofmale larvae as ovary recipients eliminates diapause in eggs produced in the implants. Unfertilized eggs of some silkworm clones respond also to the cold-shock treatment by producing homozygous fertile sons; cloned females can be crossed with their parthenogenetic sons to obtain progeny homozygous for the transgene in both sexes. Rational exploitation of available parthenozygous pools and the use of parthenocloning methods enable rapid fixation and maintenance of the desired genotypes.


Assuntos
Bombyx/genética , Clonagem Molecular/métodos , Engenharia Genética/métodos , Seda/síntese química , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Partenogênese , Seda/classificação , Seda/genética
9.
Biomacromolecules ; 16(8): 2506-13, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26175077

RESUMO

Recombinant protein polymers, which can combine different bioinspired self-assembly motifs in a well-defined block sequence, have large potential as building blocks for making complex, hierarchically structured materials. In this paper we demonstrate the stepwise formation of thermosensitive hydrogels by combination of two distinct, orthogonal self-assembly mechanisms. In the first step, fibers are coassembled from two recombinant protein polymers: (a) a symmetric silk-like block copolymer consisting of a central silk-like block flanked by two soluble random coil blocks and (b) an asymmetric silk-collagen-like block copolymer consisting of a central random-coil block flanked on one side by a silk-like block and on the other side a collagen-like block. In the second step, induced by cooling, the collagen-like blocks form triple helices and thereby cross-link the fibers, leading to hydrogels with a thermo-reversibly switchable stiffness. Our work demonstrates how complex self-assembled materials can be formed through careful control of the self-assembly pathway.


Assuntos
Colágeno/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Proteínas Recombinantes/síntese química , Seda/química , Sequência de Aminoácidos , Colágeno/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polímeros/síntese química , Polímeros/química , Proteínas Recombinantes/química , Seda/síntese química , Temperatura
10.
Nat Chem Biol ; 11(5): 309-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25885958

RESUMO

Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk.


Assuntos
Fibroínas/química , Seda/síntese química , Aranhas/metabolismo , Animais , Glândulas Exócrinas/fisiologia , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
11.
Biomacromolecules ; 16(5): 1582-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25894928

RESUMO

A delivery platform was developed using silk-based hydrogels, and sustained delivery of the cationic chemokine CXCL12 at therapeutically relevant doses is demonstrated. Hydrogels were prepared from plain silk and silk that had been chemically modified with sulfonic acid groups. CXCL12 was mixed with the silk solution prior to gelation, resulting in 100% encapsulation efficiency, and both hydrated and lyophilized gels were compared. By attaching a fluorescein tag to CXCL12 using a site-specific sortase-mediated enzymatic ligation, release was easily quantified in a high-throughput manner using fluorescence spectroscopy. CXCL12 continually eluted from both plain and acid-modified silk hydrogels for more than 5 weeks at concentrations ranging from 10 to 160 ng per day, depending on the gel preparation method. Notably, acid-modified silk hydrogels displayed minimal burst release yet had higher long-term release rates compared to those of plain silk hydrogels. Similar release profiles were observed over a range of loading capacities, allowing dosage to be easily varied.


Assuntos
Quimiocina CXCL12/química , Hidrogéis/química , Seda/química , Quimiocina CXCL12/síntese química , Hidrogéis/síntese química , Seda/síntese química , Ácidos Sulfônicos/química
12.
Biomacromolecules ; 16(4): 1418-25, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25789668

RESUMO

Spider silk is a striking and robust natural material that has an unrivaled combination of strength and elasticity. There are two major problems in creating materials from recombinant spider silk proteins (rSSps): expressing sufficient quantities of the large, highly repetitive proteins and solvating the naturally self-assembling proteins once produced. To address the second problem, we have developed a method to rapidly dissolve rSSps in water in lieu of traditional organic solvents and accomplish nearly 100% solvation and recovery of the protein. Our method involves generating pressure and temperature in a sealed vial by using short, repetitive bursts from a conventional microwave. The method is scalable and has been successful with all rSSps used to date. From these easily generated aqueous solutions of rSSps, a wide variety of materials have been produced. Production of fibers, films, hydrogels, lyogels, sponges, and adhesives and studies of their mechanical and structural properties are reported. To our knowledge, ours is the only method that is cost-effective and scalable for mass production. This solvation method allows a choice of the physical form of product to take advantage of spider silks' mechanical properties without using costly and problematic organic solvents.


Assuntos
Técnicas de Química Sintética/métodos , Fibroínas/química , Seda/síntese química , Micro-Ondas , Multimerização Proteica , Proteínas Recombinantes/química , Têxteis
13.
Biomacromolecules ; 16(1): 97-104, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25469860

RESUMO

The layer-by-layer technique has been used as a powerful method to produce multilayer thin films with tunable properties. When natural polymers are employed, complicated phenomena such as self-aggregation and fibrilogenesis can occur, making it more difficult to obtain and characterize high-quality films. The weak acid and base character of such materials provides multilayer systems that may differ from those found with synthetic polymers due to strong self-organization effects. Specifically, LbL films prepared with chitosan and silk fibroin (SF) often involve the deposition of fibroin fibrils, which can influence the assembly process, surface properties, and overall film functionality. In this case, one has the intriguing possibility of realizing multilayer thin films with aligned nanofibers. In this article, we propose a strategy to control fibroin fibril formation by adjusting the assembly partner. Aligned fibroin fibrils were formed when chitosan was used as the counterpart, whereas no fibrils were observed when poly(allylamine hydrochloride) (PAH) was used. Charge density, which is higher in PAH, apparently stabilizes SF aggregates on the nanometer scale, thereby preventing their organization into fibrils. The drying step between the deposition of each layer was also crucial for film formation, as it stabilizes the SF molecules. Preliminary cell studies with optimized multilayers indicated that cell viability of NIH-3T3 fibroblasts remained between 90 and 100% after surface seeding, showing the potential application of the films in the biomedical field, as coatings and functional surfaces.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Fibroínas/síntese química , Nanofibras/química , Seda/síntese química , Animais , Bombyx , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Materiais Revestidos Biocompatíveis/farmacologia , Fibroínas/farmacologia , Camundongos , Células NIH 3T3 , Nanofibras/administração & dosagem , Seda/farmacologia , Propriedades de Superfície
14.
Biomacromolecules ; 15(11): 4073-81, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25259849

RESUMO

Dragline silk has been proposed to contain two main protein constituents, MaSp1 and MaSp2. However, the mechanical properties of synthetic spider silks spun from recombinant MaSp1 and MaSp2 proteins have yet to approach natural fibers, implying the natural spinning dope is missing critical factors. Here we report the discovery of novel molecular constituents within the spinning dope that are extruded into dragline silk. Protein studies of the liquid spinning dope from the major ampullate gland, coupled with the analysis of dragline silk fibers using mass spectrometry, demonstrate the presence of a new family of low-molecular-weight cysteine-rich proteins (CRPs) that colocalize with the MA fibroins. Expression of the CRP family members is linked to dragline silk production, specifically MaSp1 and MaSp2 mRNA synthesis. Biochemical data support that CRP molecules are secreted into the spinning dope and assembled into macromolecular complexes via disulfide bond linkages. Sequence analysis supports that CRP molecules share similarities to members that belong to the cystine slipknot superfamily, suggesting that these factors may have evolved to increase fiber toughness by serving as molecular hubs that dissipate large amounts of energy under stress. Collectively, our findings provide molecular details about the components of dragline silk, providing new insight that will advance materials development of synthetic spider silk for industrial applications.


Assuntos
Cisteína/síntese química , Fibroínas/síntese química , Seda/síntese química , Sequência de Aminoácidos , Animais , Viúva Negra , Cisteína/análise , Fibroínas/análise , Fibroínas/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Seda/análise , Seda/genética
15.
Bioinspir Biomim ; 9(3): 036014, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24960453

RESUMO

Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2-0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.


Assuntos
Adesivos/síntese química , Materiais Biomiméticos/síntese química , Modelos Químicos , Plásticos/síntese química , Robótica/métodos , Seda/síntese química , Aranhas/química , Animais , Simulação por Computador , Análise de Elementos Finitos , Temperatura Alta , Teste de Materiais , Impressão Tridimensional , Estresse Mecânico , Resistência à Tração
16.
Biomacromolecules ; 13(12): 3938-48, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23110450

RESUMO

Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia , indicates that MaSp1 proteins are more easily formed into ß-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.


Assuntos
Materiais Biomiméticos/química , Fibroínas/química , Seda/síntese química , Aranhas , Sequência de Aminoácidos , Animais , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Feminino , Fibroínas/genética , Expressão Gênica , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aranhas/química , Aranhas/genética , Difração de Raios X
17.
J Vis Exp ; (65): e4191, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22847722

RESUMO

As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.


Assuntos
Materiais Biomiméticos/síntese química , Seda/síntese química , Aranhas , Animais
18.
Acta Biomater ; 7(10): 3789-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21689795

RESUMO

Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in Escherichia coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibers of around 200 nm diameter. Infrared spectroscopy found that the molecular structure of the nanofibers was predominantly coiled coil, essentially the same as native honeybee silk. Mats of the honeybee nanofibers were treated with methanol or by water annealing, which increased their ß-sheet content and rendered them water insensitive. The insoluble mats were degraded by protease on a time scale of hours to days. The protease gradually released proteins from the solid state and these were subsequently rapidly degraded into small peptides without the accumulation of partial degradation products. Cell culture assays demonstrated that the mats allowed survival, attachment and proliferation of fibroblasts. These results indicate that honeybee silk proteins meet many prerequisites for use as a biomaterial.


Assuntos
Abelhas/química , Nanofibras/química , Nanotecnologia/métodos , Seda/química , Seda/síntese química , Animais , Biodegradação Ambiental , Adesão Celular , Proliferação de Células , Quimotripsina/metabolismo , Fibroblastos/citologia , Proteínas de Fluorescência Verde/metabolismo , Nanofibras/ultraestrutura , Coelhos , Proteínas Recombinantes/química , Seda/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Ultrason Sonochem ; 18(1): 282-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20638888

RESUMO

The silk yarn containing Ag nanoparticles was prepared through the chemical reduction under ultrasound irradiation. In this system, ethylene glycol served as a reduction reagent and protecting silver nanoparticles from aggregation. The effect of some parameter, such as power of ultrasound irradiation and temperature in growth of the nanometric Ag were studied. Particle sizes and morphology of nanoparticle are depending on power of ultrasound irradiation. Results show a decrease in the particles size as decreasing power of ultrasound irradiation. Also, an increasing of temperature leads to an increasing of particle size. The silk yarn containing Ag nanoparticles were characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy.


Assuntos
Nanopartículas Metálicas/química , Seda/química , Seda/síntese química , Prata/química , Ultrassom , Animais
20.
Biopolymers ; 96(2): 222-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20564008

RESUMO

Dragline silk is a high-performance biopolymer with exceptional mechanical properties. Artificial spider dragline silk is currently prepared by a recombinant technique or chemical synthesis. However, the recombinant process is costly and large-sized synthetic peptides are needed for fiber formation. In addition, the silk fibers that are produced are much weaker than a fiber derived from a native spider. In this study, a small peptide was chemically synthesized and examined for its ability to participate in fiber formation. A short synthetic peptide derived from Nephila clavata was prepared by a solid-phase peptide method, based on a prediction using the hydrophobic parameter of each individual amino acid residue. After purification of the spider peptide, fiber formation was examined under several conditions. Fiber formation proceeded in the acidic pH range, and larger fibers were produced when organic solvents such as trifluoroethanol and acetonitrile were used at an acidic pH. Circular dichroism measurements of the spider peptide indicate that the peptide has a beta-sheet structure and that the formation of a beta-sheet structure is required for the spider peptide to undergo fiber formation.


Assuntos
Peptídeos/química , Seda/química , Aranhas/química , Animais , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Peptídeos/síntese química , Estrutura Secundária de Proteína , Seda/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...