Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.011
Filtrar
1.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
2.
Vet Q ; 44(1): 1-10, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557294

RESUMO

Research on the effects of selenium nanoparticles (Se-NPs), particularly in Japanese quails, is lacking, especially regarding the potential for DNA damage. Therefore, this study aimed to investigate the impact of administering 0.2 and 0.4 mg/kg of Se-NPs on the growth performance, DNA integrity, and histopathological alterations of the liver, lung, kidney, and heart in quails. A total of 480 one-day-old Japanese quails were divided into three experimental groups as follows: Group 1 served as the control and received only basic feed, while Group 2 and 3 received 0.2 mg/kg and 0.4 mg/kg of Se-NPs via oral gavage. Our results suggested that, birds fed with Se-NPs at both levels significantly (p < .01) reduced feed intake, however, weight gain was significantly (p < .01) increased in quails supplemented with 0.2 mg/kg. Similarly, feed conversion ratio (FCR) was significantly (p < .01) reduced in group supplemented with 0.2 mg/kg Se-NPs. White blood cells increased significantly (P0.01) in 0.4 mg/kg while haemoglobin and red cell distribution width decreased (p < .01) in the same group. Both treatment regimens resulted in DNA damage and histopathological alterations; however, the adverse effects were more prominent in the group receiving the higher dose of 0.4 mg/kg. These findings indicate that the lower dose of 0.2 mg/kg may have beneficial effects on growth. However, the higher dose of 0.4 mg/kg not only negatively impacts growth but also leads to histopathological alterations in major organs of the body and DNA damage as well.


Assuntos
Coturnix , Selênio , Animais , Selênio/toxicidade , Suplementos Nutricionais , Aumento de Peso , Dano ao DNA , Ração Animal/análise , Dieta/veterinária
3.
Arch Environ Contam Toxicol ; 86(3): 249-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494559

RESUMO

Selenium (Se) bioaccumulation and toxicity in aquatic vertebrates have been thoroughly investigated. Limited information is available on Se bioaccumulation at the base of aquatic food webs. In this study, we evaluated Se bioaccumulation in two benthic macroinvertebrates (BMI), Hyalella azteca and Chironomus dilutus raised in the laboratory and caged in-situ to a Canadian boreal lake e (i.e., McClean Lake) that receives continuous low-level inputs of Se (< 1 µg/L) from a uranium mill. Additional Se bioaccumulation assays were conducted in the laboratory with these BMI to (i) confirm field results, (ii) compare Se bioaccumulation in lab-read and native H. azteca populations and (iii) identify the major Se exposure pathway (surface water, top 1 cm and top 2-3 cm sediment layers) leading to Se bioaccumulation in H. azteca. Field and laboratory studies indicated overall comparable Se bioaccumulation and trophic transfer factors (TTFs) in co-exposed H. azteca (whole-body Se 0.9-3.1 µg/g d.w; TTFs 0.6-6.3) and C. dilutus (whole-body Se at 0.7-3.2 µg Se/g d.w.; TTFs 0.7-3.4). Native and lab-reared H. azteca populations exposed to sediment and periphyton from McClean Lake exhibited similar Se uptake and bioaccumulation (NLR, p = 0.003; 4.1 ± 0.8 µg Se/g d.w), demonstrating that lab-reared organisms are good surrogates to assess on-site Se bioaccumulation potential. The greater Se concentrations in H. azteca exposed to the top 1-3 cm sediment layer relative to waterborne exposure, corroborates the importance of the sediment-detrital pathway leading to greater Se bioaccumulation potential to higher trophic levels via BMI.


Assuntos
Anfípodes , Formigas , Chironomidae , Selênio , Poluentes Químicos da Água , Animais , Selênio/toxicidade , Selênio/metabolismo , Chironomidae/metabolismo , Bioacumulação , Canadá , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Sedimentos Geológicos
4.
Environ Toxicol Pharmacol ; 107: 104394, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382585

RESUMO

The Itezhi-tezhi Dam on the Kafue River in Zambia is a major capture fishery. However, the upstream reaches of the Kafue River receive effluents from copper mines. It was unclear whether fish health in the dam is adversely affected due to the mining effluents. We investigated the health status of fish in Itezhi-tezh Dam using a histology-based fish health assessment protocol with Oreochromis andersonii as a bioindicator. Fish were sampled in the Itezhi-tezh Dam and at a reference site further upstream on the Kafue River before it enters the mining region. Metal bioaccumulation, biometric indices and histological alterations in the gills, gonads, hearts, kidneys and livers were assessed. The findings revealed significantly higher copper and selenium sediment concentrations (p = 0.02843 and p = 0.02107 respectively), bioaccumulation of copper and selenium, and increased histological alterations in the gills, kidneys and livers of fish in the Itezhi-tezhi Dam.


Assuntos
Ciclídeos , Metais Pesados , Selênio , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/análise , Bioacumulação , Selênio/toxicidade , Zâmbia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise
5.
BMC Microbiol ; 24(1): 21, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216871

RESUMO

BACKGROUND: As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by Streptomyces parvulus MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents. RESULTS: SeNPs biosynthesized by Streptomyces parvulus MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC50 = 13.04 µg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC50 = 21.35 µg/ml) but low cytotoxicity against WI-38 normal cell line (IC50 = 85.69 µg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC50 values of 11.82 and 7.83 µg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC50 of 153.3 µg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity. CONCLUSION: The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.


Assuntos
Anti-Infecciosos , Antineoplásicos , Quitosana , Nanopartículas , Salicilatos , Selênio , Streptomyces , Humanos , Selênio/metabolismo , Selênio/toxicidade , Nanoconjugados , Quitosana/farmacologia , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
6.
Aquat Toxicol ; 266: 106791, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070396

RESUMO

Selenium, a trace mineral, is essential for several physiological processes in humans and animals. It is an antioxidant vital for the immunological response, DNA synthesis, thyroid hormone metabolism, and antioxidant defense enzymes. Zebrafish embryos and larvae were exposed to different concentrations of sodium selenite (SodSe) and selenium nanoparticles (SeNs) at various developmental stages. The study evaluated the impact of SodSe and SeNs on larvae survival, hatching rate, and morphological abnormalities. Also, acridine orange staining was used to analyze the apoptotic cell death, and behavioral tests were conducted to assess anxiety-like behaviors. The results showed that both SodSe and SeNs influence the development and neurobehavior of zebrafish larvae in a concentration-dependent manner. SodSe at high concentration causes low survival rates, delayed hatching, and increased morphological defects in zebrafish larvae. In addition, exposure to SodSe resulted in elevated apoptosis in different larval tissues. Zebrafish larvae treated with SodSe and SeNs exhibited anxiety-like behaviour, increased thigmotaxis, less exploratory behaviour, and less swimming patterns. The nerve conductions and stimuli responses evaluated through acetylcholine esterase (AChE) and cortisol assays, revealed a decrease in the activity in a dose-dependent manner of SodSe and SeNs. Interestingly, the effects of SeNs were lower even at higher concentrations when compared with SodSe at lower concentrations on zebrafish embryos. This shows that SeNs synthesized through biological methods may be less toxic and may have lower effect on the development and neurobehavior of zebrafish larvae. Thus, our study confirms the cytotoxic and neurobehavioral effects of SodSe and suggests the use of SeNs at lower concentration to provide insights into better understanding of developmental stages and metabolic pathways in zebrafish larvae.


Assuntos
Nanopartículas , Selênio , Poluentes Químicos da Água , Humanos , Animais , Selênio/toxicidade , Peixe-Zebra/fisiologia , Selenito de Sódio/toxicidade , Antioxidantes/farmacologia , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Larva , Embrião não Mamífero
7.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029582

RESUMO

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Assuntos
Nefropatias , Selênio , Toxina T-2 , Animais , Ratos , Receptor alfa de Estrogênio/metabolismo , Fibrose , Nefropatias/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/toxicidade , Transdução de Sinais , Toxina T-2/toxicidade
8.
Sci Total Environ ; 913: 169730, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160834

RESUMO

Bisphenol A (BPA) is a phenolic organic synthetic compound that is used as the raw material of polycarbonate plastics, and its safety issues have recently attracted wide attention. Selenium (Se) deficiency has gradually developed into a global disease affecting intestinal function via oxidative stress and apoptosis. However, the toxic effects and potential mechanisms of BPA exposure and Se deficiency in the chicken intestines have not been studied. In this study, BPA exposure and/or Se deficiency models were established in vivo and in vitro to investigate the effects of Se deficiency and BPA on chicken jejunum. The results showed that BPA exposure and/or Se deficiency increased jejunum oxidative stress and DNA damage, activated P53 pathway, led to mitochondrial dysfunction, and induced apoptosis and cell cycle arrest. Using protein-protein molecular docking, we found a strong binding ability between P53 and peroxisome proliferator-activated receptor γ coactivator-1, thereby regulating mitochondrial dysfunctional apoptosis. In addition, we used N-acetyl-L-cysteine and pifithrin-α for in vitro intervention and found that N-acetyl-L-cysteine and pifithrin-α intervention reversed the aforementioned adverse effects. This study clarified the potential mechanism by which Se deficiency exacerbates BPA induced intestinal injury in chickens through reactive oxygen species/P53, which provides a new idea for the study of environmental combined toxicity of Se deficiency, and insights into animal intestinal health from a new perspective.


Assuntos
Compostos Benzidrílicos , Benzotiazóis , Fenóis , Selênio , Tolueno/análogos & derivados , Animais , Espécies Reativas de Oxigênio/metabolismo , Selênio/toxicidade , Selênio/metabolismo , Galinhas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilcisteína/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Intestinos , Apoptose , Pontos de Checagem do Ciclo Celular
9.
Sci Total Environ ; 912: 169338, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104801

RESUMO

Selenium (Se) is an essential micronutrient that becomes toxic when exposures minimally exceed those that are physiologically required. Studies on Se contaminated aquatic environments have identified that embryo-larval fishes are at particular risk of Se toxicity, primarily due to maternal Se transfer to developing eggs during oogenesis. This study emulated these exposures in embryo-larval fathead minnow (FHM), rainbow trout (RBT), white sucker (WSu), and white sturgeon (WSt) using embryonic selenomethionine (SeMet) microinjections. Adverse Se-outcomes observed across these species included spinal and edematous deformities, total individuals deformed, and reduced survival. Spinal deformity was the most sensitive sublethal endpoint and developed at the lowest concentrations in WSt (10 % effects concentration (EC10) = 12.42 µg (total) Se/g dry weight (d.w.)) followed by WSu (EC10 = 14.49 µg Se/g d.w.) and FHM (EC10 = 18.10 µg Se/g d.w.). High mortality was observed in RBT, but SeMet influences were confounded by the species' innate sensitivity to the microinjections themselves. 5 % hazardous concentrations derived across exposure type data subsets were ∼49 % higher when derived from within-species maternal transfer exclusive data as opposed to all, or within-species microinjection exclusive, data. These results support the current exclusion of SeMet microinjections during regulatory guideline derivation and their inclusion when studying mechanistic Se toxicity across phylogenetically distant fishes.


Assuntos
Cyprinidae , Selênio , Poluentes Químicos da Água , Animais , Selenometionina/toxicidade , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Peixes , Selênio/toxicidade
10.
Sci Total Environ ; 912: 169461, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141982

RESUMO

Mercury (Hg) is one of the major pollutants in the environment, which requires effective countermeasures to manage its risk to both human health and the ecosystem. The antagonistic effect of selenium (Se) against methyl mercury (MeHg) and HgCl2 was evaluated using parent and offspring Caenorhabditis elegans (C. elegans) in this study. Through designated acute exposure of 24 h, our results showed that both MeHg and HgCl2 induced dose-dependent reproductive toxicity, including increased germ cell apoptosis, decrease in the number of oocytes, brood size, and sperm activation. The increased germ cell apoptosis was even higher in F1 and F2 generations, but returned to control level in F3 generation. Pretreatment with Se significantly suppressed the reproductive toxicity caused by Hg in both parental worms and their offspring, but had little influence on Hg accumulation. The protective role of Se was found closely related to the chemical forms of Hg: mtl-1 and mtl-2 genes participated in reducing the toxicity of HgCl2, while the gst-4 gene was involved in the reduced toxicity of MeHg. The formation of Se-Hg complex and the antioxidant function of Se were considered as possible antagonistic mechanisms. Our data indicated that pretreatment with Se could effectively protect C. elegans and their offspring against the reproductive toxicity of Hg in different chemical forms, which provided a reference for the prevention of Hg poisoning and essential information for better understanding the detoxification potential of Se on heavy metals.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Animais , Humanos , Masculino , Mercúrio/toxicidade , Selênio/toxicidade , Caenorhabditis elegans/genética , Ecossistema , Sêmen , Compostos de Metilmercúrio/toxicidade
11.
Environ Pollut ; 338: 122675, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793540

RESUMO

Deficiencies of selenium (Se), a necessary microelement for humans, can be remedied by appropriately supplying Se-enriched rice. However, overconsumption of Se-enriched rice poses a potential risk. To accurately assess Se human health risks associated with Se-enriched rice consumption, we developed a rat in vivo model to systematically explore the relative bioavailability of Se (Se-RBA) from Se-enriched rice from a wide geographic range. Se concentrations were in the range of 0.06 ± 0.05 to 0.15 ± 0.15 mg kg-1, averaging 0.12 ± 0.11 mg kg-1, in 196 rice samples from 21 Chinese provinces, and selenomethionine (SeMet) was the dominant Se fraction (58.0-96.5%). The Se-RBA of Se-enriched rice calculated from urine ranged from 34.86% to 102.29%, averaging 62.27% (n = 12), and was positively correlated with the proportion of SeMet in rice (p < 0.05, R2 = 0.51). Furthermore, the Se intake calculated based on the Se-RBA indicated that the Se intake of consumers of Se-enriched rice was far less than the tolerable upper intake level. Thus, the limits established by law assume overestimates of the actual nutritional value of the Se content in Se-enriched rice, and it is important to consider Se bioavailability. The current study offers suggestions for future research and provides methods to reduce the uncertainty in estimating the health risks associated with Se intake from rice.


Assuntos
Oryza , Selênio , Humanos , Ratos , Animais , Selênio/toxicidade , Disponibilidade Biológica , Selenometionina
12.
Food Chem Toxicol ; 181: 114059, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758048

RESUMO

To evaluate and compare the safety of four selenium supplements, namely Se-enriched peptides (SeP), yeast selenium (SeY), L-Se-methylselenocysteine (L-SeMc) and sodium selenite (Na2SeO3), the subchronic toxicity study was designed by 90-day gavage administration in Sprague-Dawley rats. The doses of SeP, SeY, L-SeMc and Na2SeO3 were 0.15, 0.30 and 0.60 mg/kg bw/day, with additional dose of 0.45 mg/kg L-SeMc (All dose calculated as Se). Symptoms like growling, hair loss and significant weight loss were found at 0.60 mg/kg of L-SeMc, but not in other groups. At the dose of 0.60 mg/kg, females in Na2SeO3, SeY and L-SeMc groups showed significant elevations in ALT and/or ALP. Pathologic manifestations such as bile duct hyperplasia and cholestasis were predominantly found in females at 0.6 mg/kg of L-SeMc and SeY groups, and in males at same dose of L-SeMc group showed marked testicular atrophy. 0.60 mg/kg of SeY and Na2SeO3, and 0.30, 0.45, 0.60 mg/kg of L-SeMc induced significant reductions in sperm motility rates, rapid movement and amount. In conclusion, the NOAEL of SeP, SeY, L-SeMc, Na2SeO3 was all 0.30 mg/kg for female, and 0.60, 0.30, 0.15 and 0.30 mg/kg for male respectively. Liver and reproductive organs are possible toxic target organs of hyper selenium.


Assuntos
Selênio , Masculino , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Selênio/toxicidade , Motilidade dos Espermatozoides , Suplementos Nutricionais/toxicidade , Selenito de Sódio/toxicidade , Saccharomyces cerevisiae
13.
Environ Pollut ; 337: 122555, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714402

RESUMO

Revealing the spatial features and source of associated potentially toxic elements (PTEs) is crucial for the safe use of selenium (Se)-rich soils. An integrative risk assessment (GRRRA) approach based on geostatistical analysis (GA), random forest (RF), and receptor models (RMs) was first established to investigate the spatial distribution, sources, and potential ecological risks (PER) of PTEs in 982 soils from Ziyang City, a typical natural Se-rich area in China. RF combined with multiple RMs supported the source apportionment derived from the RMs and provided accurate results for source identification. Then, quantified source contributions were introduced into the risk assessment. Eighty-three percent of the samples contain Cd at a high PER level in local Se-rich soils. GA based on spatial interpolation and spatial autocorrelation showed that soil PTEs have distinct spatial characteristics, and high values are primarily distributed in this research areas. Absolute principal component score/multiple line regression (APCS/MLR) is more suitable than positive matrix factorization (PMF) for source apportionment in this study. RF combined with RMs more accurately and scientifically extracted four sources of soil PTEs: parent material (48.91%), mining (17.93%), agriculture (8.54%), and atmospheric deposition (24.63%). Monte Carlo simulation (MCS) demonstrates a 47.73% probability of a non-negligible risk (RI > 150) caused by parent material and 3.6% from industrial sources, respectively. Parent material (64.20%, RI = 229.56) and mining (16.49%, RI = 58.96) sources contribute to the highest PER of PTEs. In conclusion, the GRRRA method can comprehensively analyze the distribution and sources of soil PTEs and effectively quantify the source contribution to PER, thus providing the theoretical foundation for the secure utilization of Se-rich soils and environmental management and decision making.


Assuntos
Metais Pesados , Selênio , Poluentes do Solo , Solo , Selênio/toxicidade , Selênio/análise , Metais Pesados/análise , Monitoramento Ambiental/métodos , Algoritmo Florestas Aleatórias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco/métodos , China
14.
Aquat Toxicol ; 262: 106663, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598521

RESUMO

Selenium (Se) has been shown to cause various toxicities in predatory species (i.e., fish and birds) in Se-contaminated aquatic environments. However, trophic transfer of Se from abiotic environments to freshwater fish has been relatively less addressed. In this study, 2-month-old mosquitofish (Gambusia affinis) were fed Se-enriched oligochaete (Lumbriculus variegatus, exposed to different concentrations of Se(IV) at 0.0, 3.0, 10.0, and 30.0 µg/g dry weight for 7 days) for 45 days. Tissue distribution, Se speciation, and effects on the antioxidant physiology in G. affinis were assessed. The results showed Se was rapidly accumulated in the oligochaete, with 6.30 ± 1.20, 16.20 ± 2.10, and 34.50 ± 2.40 µg/g dw of total Se levels in the worms exposed to 3.0, 10.0, and 30.0 µg/g of Se(IV), respectively. Total Se levels were increased in a dose-dependent manner in fish tissues and Se(IV) from sediments was maternally transferred to the fish embryos. Se-Met-and Se-Cys-were the predominant Se species in the worm and fish tissues, accounting for a minimum of 91.01% of the total Se. Furthermore, increased lipid peroxidation and altered the activities of antioxidant enzymes and levels of GSH were noticed in G. affinis fed the Se-enriched L. variegatus. This study has demonstrated that Se(IV) is transferred from an abiotic vector to freshwater organisms, disturbing the antioxidant physiology in G. affinis and potentially their offspring. This study highlights the importance of dietary exposure on the accumulation and toxicity of Se in aquatic organisms.


Assuntos
Ciprinodontiformes , Selênio , Poluentes Químicos da Água , Animais , Selênio/toxicidade , Antioxidantes , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade
15.
Environ Res ; 236(Pt 1): 116722, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487923

RESUMO

The ageing population has been steadily increasing worldwide, leading to a higher risk of cognitive decline and dementia. Environmental toxicants, particularly metals, have been identified as modifiable risk factors for cognitive impairment. Continuous exposure to metals occurs mainly through dietary sources, with older adults being particularly vulnerable. However, imbalances in the gut microbiota, known as dysbiosis, have also been associated with dementia. A literature review was conducted to explore the potential role of metals in the development of cognitive decline and the most prevalent primary neurodegenerative dementias, as well as their interaction with the gut microbiota. High levels of iron (Fe) and copper (Cu) are associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD), while low selenium (Se) levels are linked to poor cognitive status. Parkinson's disease dementia (PDD) is associated with elevated levels of iron (Fe), manganese (Mn), and zinc (Zn), but the role of copper (Cu) remains unclear. The relationship between metals and Lewy body dementia (LBD) requires further investigation. High aluminium (Al) exposure is associated with frontotemporal dementia (FTD), and elevated selenium (Se) levels may be linked to its onset. Challenges in comparing studies arise from the heterogeneity of metal analysis matrices and analytical techniques, as well as the limitations of small study cohorts. More research is needed to understand the influence of metals on cognition through the gut microbiota (GMB) and its potential relevance in the development of these diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Doença de Parkinson , Selênio , Humanos , Idoso , Demência/induzido quimicamente , Demência/epidemiologia , Cobre/toxicidade , Selênio/toxicidade , Metais/toxicidade , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , Ferro/toxicidade
16.
Environ Toxicol Chem ; 42(11): 2350-2357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431894

RESUMO

Maternal transfer of selenium (Se) to developing fish eggs during vitellogenesis can cause larval deformity and mortality. Previous studies have shown wide variation among fish species in both the magnitude of maternal transfer (exposure) and the egg Se concentration causing effects (sensitivity). We studied maternal transfer and effects of Se on early life stage development, survival, and growth of redside shiner (Richardsonius balteatus), a small-bodied cyprinid that has been reported to have relatively high ovary:muscle Se concentration ratios. Gametes were collected from lentic areas in southeast British Columbia (Canada) with a range of dietary Se concentrations related to weathering of waste rock from coal mining. Eggs were fertilized and reared in the laboratory from hatch to the onset of exogenous feeding. Larvae were assessed for survival, length, weight, Se-characteristic deformities, and edema. Eggs from a total of 56 females were collected, with egg Se concentrations from 0.7 to 28 mg/kg dry weight. Maternal transfer varied among sites, with egg:muscle Se concentration ratios ranging from <1 to >4. We also found that sampling residual ovaries can overestimate Se concentrations in ripe eggs by up to a factor of 5.7. A correlation between larval weight and egg Se concentration was identified, although the relationship was weak (r2 < 0.1) and appeared to be a site effect. No other relationships were observed between larval endpoints and egg Se concentrations up to the highest concentration tested, indicating that the effects threshold for this species may be >28 mg/kg dry weight in eggs. These data indicate that redside shiner is less sensitive to maternally transferred Se than most other tested fish species. Environ Toxicol Chem 2023;42:2350-2357. © 2023 SETAC.


Assuntos
Cyprinidae , Selênio , Poluentes Químicos da Água , Animais , Feminino , Selênio/toxicidade , Selênio/análise , Poluentes Químicos da Água/análise , Larva , Colúmbia Britânica
17.
Langmuir ; 39(30): 10406-10419, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462214

RESUMO

Microbial nanotechnology is an expanding research area devoted to producing biogenic metal and metalloid nanomaterials (NMs) using microorganisms. Often, biogenic NMs are explored as antimicrobial, anticancer, or antioxidant agents. Yet, most studies focus on their applications rather than the underlying mechanism of action or toxicity. Here, we evaluate the toxicity of our well-characterized biogenic selenium nanoparticles (bSeNPs) produced by the Stenotrophomonas maltophilia strain SeITE02 against the model yeast Saccharomyces cerevisiae comparing it with chemogenic SeNPs (cSeNPs). Knowing from previous studies that the biogenic extract contained bSeNPs in an organic material (OM) and supported here by Fourier transform infrared spectroscopy, we removed and incubated it with cSeNPs (cSeNPs_OM) to assess its influence on the toxicity of these formulations. Specifically, we focused on the first stages of the eukaryotic cell exposure to these samples─i.e., their interaction with the cell lipid membrane, which was mimicked by preparing vesicles from yeast polar lipid extract or phosphatidylcholine lipids. Fluidity changes derived from biogenic and chemogenic samples revealed that the bSeNP extract mediated the overall rigidification of lipid vesicles, while cSeNPs showed negligible effects. The OM and cSeNPs_OM induced similar modifications to the bSeNP extract, reiterating the need to consider the OM influence on the physical-chemical and biological properties of bSeNP extracts.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Selênio , Selênio/toxicidade , Selênio/química , Células Eucarióticas/metabolismo , Saccharomyces cerevisiae , Nanopartículas/química , Lipídeos
18.
J Trace Elem Med Biol ; 79: 127235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285631

RESUMO

BACKGROUND: To protect from toxicity at supra-essential doses of selenium, it is important to determine dose levels at which adverse effects occur. METHODS: We identified relevant literature on the repeated dosage of selenium and extracted dose descriptors on reported endpoints, except on genotoxicity/carcinogenicity. RESULTS: Selenium forms with toxicological data were organic ones: selenomethionine, selenocystine/selenocysteine; and inorganic ones, including selenite (SeO32-), selenate (SeO42-), selenium sulphide (SeS2), selenide (Se2-) and selenium nanoparticles. Clinical signs of selenium toxicity in humans include a garlicky-smelling breath, hair loss, and nail changes. One human study showed increased mortality following daily ingestion of 300 µg Se per day for 5 years, equal to a lowest-observed-adverse-effect level (LOAEL) of ∼4.3 µg/kg bw/days. The corresponding no-observed-adverse-effect level (NOAEL) was ∼2.9 µg Se/kg bw/day. One study reported an increased risk of type 2 diabetes after ∼2.9 µg Se/kg bw/day, but other studies with similar doses found no increases in mortality or incidence of type 2 diabetes. NOAELs on affected body weight in animal studies were 0.24-1.2 mg Se/kg bw/day. Other endpoints of selenium toxicity in animals include hepatotoxicity with a NOAEL as low as 2 µg/kg bw/day in rats, as well as gastrointestinal, cardiovascular, and reproductive toxicities with NOAELs of 0.6 (gastrointestinal), 0.08, and 0.4 (cardiovascular) and ≥ 0.04 mg Se/kg bw/day (reproductive), respectively. CONCLUSIONS: Dose descriptors describing selenium toxicity were as low as 2-3 µg Se/kg bw/day.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas , Selênio , Humanos , Ratos , Animais , Selênio/toxicidade , Ácido Selenioso , Selenocisteína , Nanopartículas/toxicidade
19.
J Agric Food Chem ; 71(23): 8731-8745, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37277939

RESUMO

Nanoselenium is a promising selenium supplement as a result of its low toxicity and high bioavailability. However, the understanding on the preparation, stability, bioavailability, possible risks, and related underlying mechanisms of nanoselenium is not in-depth. Thus, the above aspects were reviewed on the basis of the latest literature. The reducing capacity and stability of the reducing agent and binding force between nanoselenium and the template decide the nanoselenium stability. Although research on nanoselenium application in food, agriculture, livestock, and aquaculture has been widely carried out, it is not widely applied in the fields. Se-containing amino acids are synthesized using nanoselenium adsorbed by organisms, and they constitute Se-containing proteins with other amino acids, which improves the health of organisms via scavenging excessive radicals. Notably, excessive nanoselenium intake generates redundant Se-containing amino acids, leading to dysfunction of key proteins in organisms, and its toxic doses vary with organisms. Furthermore, some issues related to nanoselenium still need to be solved urgently.


Assuntos
Selênio , Selênio/toxicidade , Suplementos Nutricionais , Agricultura , Aquicultura , Aminoácidos
20.
Int J Environ Health Res ; 33(12): 1289-1304, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37309736

RESUMO

Polychlorinated biphenyls (PCBs) were used in different industrial areas and banned due to their high toxicity. Aroclor 1254 (A1254), commercial PCB congener, accumulates in environment leading to high human exposure. A1254 may cause hepatotoxicity, metabolic and endocrine disorders. In our study, 3-week-old male rats were separated into 6 groups: C (0.15 mg/kg Se in diet); SeS (1 mg/kg Se in diet); SeD (0.05 mg/kg Se in diet); A1254 receiving groups (A; ASeS; ASeD) were given 10 mg/kg/day A1254 orally for last 15 days of feeding period with control, SeD or SeS diet, respectively, for 5 weeks. Histopathology, oxidant/antioxidant balance, apoptosis and cell cycle proteins (p53, p21) in liver were evaluated. Our results suggest that A1254 leads to changes in histology, oxidative stress and apoptosis. Selenium deficiency augments oxidative stress and apoptosis while selenium supplementation is partially protective. More mechanistic in vivo experiments are necessary for evaluation of hepatotoxicity of PCBs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Bifenilos Policlorados , Selênio , Humanos , Ratos , Masculino , Animais , Selênio/toxicidade , Selênio/metabolismo , Bifenilos Policlorados/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...