Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Yi Chuan ; 44(6): 521-530, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729100

RESUMO

The unique capitulum of Asteraceae has important ornamental and research value. Few studies have described the complex molecular mechanism of flower development. In this study, SvGLOBOSA(SvGLO), the MADS-box gene of Senecio vulgaris, was identified by screening the transcriptome data, and its function was examined. The gene structure was analyzed and its function was predicted through bioinformatics. The relative expression levels in different tissues of wild-type S. vulgaris were analyzed by qRT-PCR. SvGLO was overexpressed in Solanum nigrum and morphological observations were made. Histological staining was used in analyzing the histological changes in the ovary of transgenic S. nigrum. The results showed that the open reading frame of SvGLO was 591 bp long, encoding 196 amino acids. It has typical MADS-box and K-box domains and contains a PI motif at the C-terminal. SvGLO belongs to the PI/GLO subfamily of class B MADS-box genes. qRT-PCR results showed that SvGLO was highly expressed in inflorescence tissues but not in vegetative organs. In SvGLO-overexpressed S. nigrum, the sepals showed some characteristics of petals, carpels transformed into stamen-like organs, and fruit development was abnormal. Histological staining revealed that the morphology of ovary wall cells of transgenic S. nigrum was similar to that of anther wall cells of the stamen of wild-type S. vulgaris. Therefore, SvGLO may be involved in the regulation of petal and stamen development in S. vulgaris.


Assuntos
Proteínas de Domínio MADS , Senécio , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senécio/metabolismo
2.
Plant Sci ; 313: 111094, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763879

RESUMO

Anthocyanins are important flavonoid pigments involved in the colouring of flowers and fruits. They are synthesized on the cytoplasmic surface of the endoplasmic reticulum and transported into the vacuole for storage. Previous reports have suggested that glutathione S-transferase (GST) is involved in anthocyanin transport. However, due to the limitation of plant materials, most GSTs only participate in the cyanidin or delphinidin transport pathway. Here, an anthocyanin-related GST, ScGST3, was identified from the transcriptome of cineraria. The expression pattern of ScGST3 was highly consistent with anthocyanin accumulation in ray florets. Molecular complementation of Arabidopsis tt19 indicated that the overexpression of ScGST3 restores the anthocyanin-deficient phenotype of the mutant. Virus-induced gene silencing (VIGS) of ScGST3 in carmine and blue cineraria leaves could inhibit anthocyanin accumulation, further confirming the function of ScGST3 in anthocyanin accumulation. In vitro assays showed that ScGST3 increases the water solubility of cyanidin-3-O-glucoside (C3G) and delphinidin-3-O-glucosid (D3G). In addition, we also identified two anthocyanin-related MYB transcription factors, ScMYB3 and ScMYB6. The expression pattern of these two genes was also highly consistent with anthocyanin accumulation. Faded abaxial leaf phenotypes were observed after the silencing of ScMYB3 and ScMYB6, and the expression levels of partial structural genes were repressed. Based on the results from dual-luciferase assays and yeast one-hybrid assays, ScMYB3 can activate the promoter of ScGST3. Collectively, the transcription of ScGST3 is regulated by ScMYB3, which plays an important role in the transport of C3G and D3G in cineraria.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Flores/metabolismo , Glutationa Transferase/metabolismo , Pigmentação/genética , Senécio/genética , Senécio/metabolismo , Fatores de Transcrição/efeitos dos fármacos , China , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glutationa Transferase/genética
3.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2389-2399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34554266

RESUMO

Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, ß-sitosterol, 2ß-(angeloyloxy)furanoeremophilane, gallic acid, 2ß-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-ß-D-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and ß-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)-induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.


Assuntos
Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Senécio/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corticosterona , Humanos , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Raízes de Plantas , Metabolismo Secundário , Senécio/metabolismo
4.
Plant Mol Biol ; 105(1-2): 55-64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915351

RESUMO

KEY MESSAGE: SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens. Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC-MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.


Assuntos
Alquil e Aril Transferases/metabolismo , Éter/metabolismo , Senécio/metabolismo , Sesquiterpenos/metabolismo , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica de Plantas , Mutagênese Sítio-Dirigida , Fosfatos de Poli-Isoprenil , Senécio/enzimologia , Senécio/genética , Senécio/crescimento & desenvolvimento , Terpenos/metabolismo , Transcriptoma
5.
Food Chem ; 342: 128384, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33214040

RESUMO

Pyrrolizidine alkaloids (PA) are secondary metabolites of plants, which are mostly found in the genus Senecio, Echium, Crotalaria, and Eupatorium. The presence of 1,2-unsaturated PA in foods is a concern to food regulators around the world because these compounds have been associated to acute and chronic toxicity, mainly in the liver. The intake foods with PA/PANO usually occur through accidental ingestion of plants and their derivatives, besides to products of vegetal-animal origin, such as honey. PA/PANO are transferred to honey by their presence in nectar, honeydew, and pollen, which are collected from the flora by bees. In addition to honey, other beekeeping products, such as pollen, royal jelly, propolis, and beeswax, are also vulnerable to PA contamination. In this context, this review provides information about chemical characteristics, regulation, and toxicity, as well as summarizes and critically discusses scientific publications that evaluated PA in honeys, pollens, royal jelly, and propolis.


Assuntos
Abelhas/química , Contaminação de Alimentos/análise , Alcaloides de Pirrolizidina/química , Animais , Abelhas/metabolismo , Echium/química , Echium/metabolismo , Mel/análise , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Pólen/química , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Senécio/química , Senécio/metabolismo
6.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023019

RESUMO

Plants growing on heavy metal (HM)-polluted soils show toxicity symptoms, such as chlorosis and growth reduction, and undergo oxidative stress due to the formation of reactive oxygen species (ROS). Plants overcome oxidative stress by producing a wide range of antioxidant molecules, such as polyphenols and flavonoids. The aim of the present work was to study the accumulation of these molecules in response to increasing concentrations of Cd, Cr, Cu, Ni, Pb and Zn and to assess whether they can be used as a tool in assessing metal-related stress in Polygonum aviculare and Senecio vulgaris. On average, P. aviculare shoots accumulated lower amounts of metals than S. vulgaris shoots. The uptake of all six elements was correlated and proportional to their concentration in the nutrient solution (ρ > 0.9), with the bioaccumulation factor (BAF) being >1 for most of them. The present research demonstrated that 82% of the samples showed a good correlation (|ρ| > 0.5) between the level of polyphenols, flavonoids and antioxidant activity and the metal concentration in plant shoots, confirming that the metal stress level and production of phenolic compounds having antioxidant activity were strictly connected. Nonetheless, the mere quantification of these molecules cannot identify the type of metal that caused the oxidative stress, neither determine the concentration of the stressors. The five tested populations of each species did not show any specific adaptation to the environment of origin.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polygonum/efeitos dos fármacos , Senécio/efeitos dos fármacos , Biodegradação Ambiental , Tolerância a Medicamentos , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Polygonum/metabolismo , Polygonum/fisiologia , Senécio/metabolismo , Senécio/fisiologia , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
7.
Chem Biodivers ; 17(6): e1900507, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277597

RESUMO

The effect of a natural sesquiterpene ketone, 9,10-dehydrofukinone (DHF), on pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains isolated from chronic infectious processes, was the focus of the present study. Lipophilic DHF produced important antibacterial synergistic effects in association with ciprofloxacin (CPX) against two biofilm-forming strains of S. aureus HT1 (FIC=0.21) and P. aeruginosa HT5 (FIC=0.05). Hence, this mixture constitutes an excellent strategy to combat these biofilm-producing bacteria that overexpress drug efflux pumps as a resistance mechanism. Additionally, a substantial rise in beneficial Lactobacillus biofilm biomass was determined as a very significant finding of this association. Particularly, a non-pathogenic biofilm increment of 119 % was quantified when the mixture was added to a probiotic L. acidophilus ATCC SD-5212 culture. A surface activity enhanced in 71 % with respect to untreated L. acidophilus culture was also generated by the DHF and CPX association, and therefore, a glycoprotein synthesis induction mediated by the mixture is discussed. The results obtained could help in the development of new selective antibiotics. From an ecological standpoint, the present study strongly suggests that DHF is a polyfunctional organic molecule produced with a high yield in Senecio punae that exerts a positive impact on a non-pathogenic plant bacterium L. plantarum CE105.


Assuntos
Senécio/química , Sesquiterpenos/química , Compostos Orgânicos Voláteis/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/fisiologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Senécio/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia
8.
Environ Pollut ; 248: 456-461, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826608

RESUMO

To elucidate the origin of the wide-spread contaminations of plant derived commodities with various alkaloids, we employed co-cultures of pyrrolizidine alkaloid (PA) containing Senecio jacobaea plants with various alkaloid free acceptor plants. Our analyses revealed that all plants grown in the vicinity of the Senecio donor plants indeed contain significant amounts of the PAs, which previously had been synthesized in the Senecio plants. These findings illustrate that typical secondary metabolites, such as pyrrolizidine alkaloids, are commonly transferred and exchanged between living plants. In contrast to the broad spectrum of alkaloids in Senecio, in the acceptor plants nearly exclusively jacobine is accumulated. This indicates that this alkaloid is exuded specifically by the Senecio roots. Although the path of alkaloid transfer from living donor plants is not yet fully elucidated, these novel insights will extend and change our understanding of plant-plant interactions and reveal a high relevance with respect to the widespread alkaloidal contaminations of plant-derived commodities. Moreover, they could be the basis for the understanding of various so far not fully understood phenomena in cultivation of various crops, e.g. the beneficial effects of crop rotations or the co-cultivation of certain vegetables.


Assuntos
Transporte Biológico/fisiologia , Raízes de Plantas/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Senécio/metabolismo , Contaminação de Medicamentos
9.
Plant J ; 95(6): 1023-1038, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952120

RESUMO

Most metal hyperaccumulating plants accumulate nickel, yet the molecular basis of Ni hyperaccumulation is not well understood. We chose Senecio coronatus to investigate this phenomenon as this species displays marked variation in shoot Ni content across ultramafic outcrops in the Barberton Greenstone Belt (South Africa), thus allowing an intraspecific comparative approach to be employed. No correlation between soil and shoot Ni contents was observed, suggesting that this variation has a genetic rather than environmental basis. This was confirmed by our observation that the accumulation phenotype of plants from two hyperaccumulator and two non-accumulator populations was maintained when the plants were grown on a soil mix from these four sites for 12 months. We analysed the genetic variation among 12 serpentine populations of S. coronatus, and used RNA-seq for de novo transcriptome assembly and analysis of gene expression in hyperaccumulator versus non-accumulator populations. Genetic analysis revealed the presence of hyperaccumulators in two well supported evolutionary lineages, indicating that Ni hyperaccumulation may have evolved more than once in this species. RNA-Seq analysis indicated that putative homologues of transporters associated with root iron uptake in plants are expressed at elevated levels in roots and shoots of hyperaccumulating populations of S. coronatus from both evolutionary lineages. We hypothesise that Ni hyperaccumulation in S. coronatus may have evolved through recruitment of these transporters, which play a role in the iron-deficiency response in other plant species.


Assuntos
Níquel/metabolismo , RNA de Plantas/genética , Senécio/metabolismo , Perfilação da Expressão Gênica , Variação Genética/genética , Genômica , Níquel/análise , Brotos de Planta/química , Brotos de Planta/metabolismo , Senécio/genética , Solo/química , Transcriptoma/genética
10.
Chem Biodivers ; 11(9): 1330-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25238075

RESUMO

The possible applicability of (un)targeted metabolomics (volatile metabolites) for revealing taxonomic/evolutionary relationships among Senecio L. species (Asteraceae; tribe Senecioneae) was explored. Essential-oil compositional data of selected Senecio/Senecioneae/Asteraceae taxa (93 samples in total) were mutually compared by means of multivariate statistical analysis (MVA), i.e., agglomerative hierarchical clustering and principal component analysis. The MVA input data set included the very first compositional data on the essential oil extracted from the aerial parts of S. viscosus L. as well as on four different Serbian populations of S. vernalis Waldst. & Kit. (oils from aerial parts and roots; eight samples in total). This metabolomic screening of Senecio/Senecioneae/Asteraceae species (herein presented results and data from the literature) pointed to short-chain alk-1-enes (e.g., oct-1-ene, non-1-ene, and undec-1-ene), with up to now restricted general occurrence in Plantae, as characteristic chemotaxonomic markers/targets for future metabolomic studies of Senecio/Senecioneae taxa. The MVA additionally showed that the evolution of the terpene metabolism (volatile mono- and sesquiterpenoids) within the Asteraceae tribe Senecioneae was not genera specific. However, the MVA did confirm plant-organ specific production/accumulation of volatiles within S. vernalis and suggested the existence of at least two volatile chemotypes for this species.


Assuntos
Metabolômica , Óleos Voláteis/metabolismo , Senécio/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Sondas Moleculares , Senécio/classificação , Especificidade da Espécie
11.
Int J Oncol ; 44(4): 1357-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24535330

RESUMO

Breast cancer is the second cause of cancer­related deaths in woman and the incidence of the disease has increased worldwide, in part due to improvements in early detection. Several drugs with anticancer effects have been extracted from plants in the last 20 years, many of which are particularly effective against breast cancer cells. In particular, we have become interested in the ethanolic extract from Senecio graveolens (synonym of S. nutans), a plant commonly called Chachacoma, in an effort to isolate compounds that could demonstrate cytotoxic effects on breast cancer cells. Senecio (Asteraceae) is the largest gender in Chile comprising approximatly 200 species. These herbs inhabit areas over 3,500 meters above the sea level in the Andes Mountains. S. graveolens is commonly used by local communities for its medicinal properties, particularly its capacity to ameliorate high-altitude-associated sickness. The cytotoxic effect of the alcoholic extract from S. graveolens, as well as its most abundant compound 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, were tested in the breast cancer cell lines ZR-75-1, MCF-7 and MDA-MB­231, and non-tumorigenic MCF-10F cells. We show that the phytochemical extract was able to induce cytotoxicity in cancer cells but not in MCF-10F. Importantly, this effect was enhanced under hypoxic conditions. However, 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, the main compound, did not by itself show an effective anticarcinogenic activity in comparison to the whole extract. Interestingly, the cytotoxic effect of the phytochemical extract was dependent on the basal MnSOD protein expression. Thus, cytotoxicity was increased when MnSOD levels were low, but resistance was evident when protein levels were high. Additionally, the crude extract seems to trigger cell death by a variety of processes, including autophagy, apoptosis and necrosis, in MCF-7 cells. In summary, S. graveolens extract possess anticancer activity displaying a specific cytotoxic effect on cancer cells, thus serving as a potential source of phytochemical compounds for cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Senécio/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/biossíntese , Caspase 8/biossíntese , Ciclo Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Necrose , Compostos Fitoquímicos/farmacologia , Alcaloides de Pirrolizidina/química
12.
J Chem Ecol ; 39(1): 109-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23306864

RESUMO

The importance of root herbivory is increasingly recognized in ecological studies, and the effects of root herbivory on plant growth, chemistry, and performance of aboveground herbivores have been relatively well studied. However, how belowground herbivory by root feeding insects affects aboveground parasitoid development is largely unknown. In this study, we examined the effects of root herbivory by wireworms (Agriotes lineatus) on the expression of primary and secondary compounds in the leaves and roots of ragwort (Jacobaea vulgaris). We also studied the effects of root herbivory on the performance of a generalist aboveground herbivore, Mamestra brassicae and its parasitoid Microplitis mediator. In contrast to what most other studies have reported, root herbivory in J. vulgaris had a strong negative effect on the total concentration of pyrrolizidine alkaloids (PAs) in shoot tissues. The composition of PAs in the shoots also changed after root herbivory. In particular, the concentration of less toxic N-oxide PAs decreased. There was no significant effect of root herbivory on PA composition and concentration in the roots. Although the concentration of PA in the leaves decreased, M. brassicae tended to grow slower on the plants exposed to root herbivory. Parasitoid performance was not affected by root herbivory, but parasitoids developed faster when the concentration of jacobine-type PAs in the foliage was higher. These results point at a putative role of individual PAs in multitrophic interactions and emphasize that generalizations about aboveground-belowground effects should be made with great caution.


Assuntos
Besouros/fisiologia , Alcaloides de Pirrolizidina/metabolismo , Senécio/metabolismo , Senécio/parasitologia , Animais , Herbivoria , Interações Hospedeiro-Parasita , Larva/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
13.
Rev. bras. plantas med ; 15(4): 503-507, 2013. tab
Artigo em Inglês | LILACS | ID: lil-695234

RESUMO

The essential oil of the aerial parts of Senecio selloi Spreng. DC. was extracted by hydrodistillation and analyzed by GC/MS. Nineteen compounds were identified, representing 99.9% of the total. The main compounds were found to be sesquiterpene hydrocarbons (71.3%), most of them with a bisabolane skeleton (59.4%). The major constituent was α-zingiberene (54%), followed by monoterpene α-isolimonene (16%). The essential oil was also tested against two Gram-positive and two Gram-negative bacterial species, three yeasts, and an algae. From the strains assayed, only Bacillus subtilis ATCC 6633 showed susceptibility (MIC and MBC = 4400 µg/mL) to the essential oil.


O óleo essencial das partes aéreas de Senecio selloi Spreng DC. foi extraído por hidrodestilação e analisado por CG/EM. Dezenove constituintes foram identificados, representando 99,9% do total. Os principais compostos fornecidos foram sesquiterpenos hidrocarbonetos (71,3%), a maioria destes com esqueleto bisabolano (59,4%). O constituinte majoritário foi a-zingibereno (54%), seguido do monoterpeno a-isolimoneno (16%). O óleo essencial foi testado contra duas cepas Gram-positivas e duas Gram-negativas, três fungos e uma alga. De todas as linhagens testadas somente Bacillus subtilis ATCC 6633 mostrou suscetibilidade (CIM e CBM = 4400 µg/mL) para o óleo essencial.


Assuntos
Óleos Voláteis/metabolismo , Anti-Infecciosos/análise , Senécio/metabolismo , Componentes Aéreos da Planta/classificação
14.
Phytochemistry ; 78: 89-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516740

RESUMO

Plants are attacked by many different herbivores. Some will consume whole leaves or roots, while others will attack specific types of tissue. Thus, insight into the metabolite profiles of different types of leaf tissues is necessary to understand plant resistance against herbivores. Jacobaea vulgaris, J. aquatica and three genotypes of their crossings were used to study the variation in metabolomic profiles between epidermis and mesophyll tissues. Extracts of epidermis and mesophyll tissues were obtained using carborundum abrasion (CA). Subsequently, (1)H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analyses were applied to compare the metabolome profiles. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) resulted in a clear separation of epidermis and mesophyll extracts. The epidermis contained significantly higher amounts of jacaranone and phenylpropanoids, specifically chlorogenic (5-O-CQA) and feruloyl quinic (FQA) acids compared to the mesophyll. In contrast, the mesophyll showed significantly higher concentrations of pyrrolizidine alkaloids (PAs), specifically jacobine and jaconine. The tissue specific distribution of these compounds was constant over all genotypes tested. Phenylpropanoids, 5-O-CQA and FQA, as well as PAs are known for their inhibitory effect on herbivores, especially against thrips. Thrips feeding commences with the penetration of the epidermis, followed by ingestion of sub-epidermal or mesophyll. Thrips thus may have to encounter phenylpropanoids in the epidermis as the first line of defence, before encountering the PAs as the ultimate defence in the mesophyll. The finding of tissue specific defense may have a major impact on studies of plant resistance. We cannot judge resistance using analyses of a whole roots, leafs or flowers. In such a whole-organism approach, the levels of potential defense compounds are far below the real ones encountered in tissues involved in the first line of defense. Instead, it is of great importance to study the defence compounds in the specific tissue to which the herbivore is confined.


Assuntos
Fenilpropionatos/química , Alcaloides de Pirrolizidina/química , Senécio/química , Herbivoria , Ressonância Magnética Nuclear Biomolecular , Fenilpropionatos/análise , Folhas de Planta/química , Alcaloides de Pirrolizidina/análise , Alcaloides de Pirrolizidina/metabolismo , Senécio/metabolismo , Distribuição Tecidual
15.
J Chem Ecol ; 37(10): 1071-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21969251

RESUMO

Segregating plant hybrids often have more ecological and molecular variability compared to parental species, and are therefore useful for studying relationships between different traits, and the adaptive significance of trait variation. Hybrid systems have been used to study the relationship between the expression of plant defense compounds and herbivore susceptibility. We conducted a western flower thrips (WFT) bioassay using a hybrid family and investigated the relationship between WFT resistance and pyrrolizidine alkaloid (PA) variation. The hybrid family consisted of two parental (Jacobaea vulgaris and Jacobaea aquatica) genotypes, two F(1) genotypes, and 94 F(2) hybrid lines. The J. aquatica genotype was more susceptible to thrips attack than the J. vulgaris genotype, the two F(1) hybrids were as susceptible as J. aquatica, and susceptibility to WFT differed among F(2) hybrid lines: 69 F(2) lines were equally susceptible compared to J. aquatica, 10 F(2) lines were more susceptible than J. aquatica and 15 F(2) lines were as resistant as J. vulgaris or were intermediate to the two parental genotypes. Among 37 individual PAs that were derived from four structural groups (senecionine-, jacobine-, erucifoline- and otosenine-like PAs), the N-oxides of jacobine, jaconine, and jacoline were negatively correlated with feeding damage caused by WFT, and the tertiary amines of jacobine, jaconine, jacoline, and other PAs did not relate to feeding damage. Total PA concentration was negatively correlated with feeding damage. Among the four PA groups, only the total concentration of the jacobine-like PAs was negatively correlated with feeding damage. Multiple regression tests suggested that jacobine-like PAs play a greater role in WFT resistance than PAs from other structural groups. We found no evidence for synergistic effects of different PAs on WFT resistance. The relationship between PA variation and WFT feeding damage in the Jacobaea hybrids suggests a role for PAs in resistance to generalist insects.


Assuntos
Interações Hospedeiro-Parasita , Alcaloides de Pirrolizidina/metabolismo , Senécio/metabolismo , Senécio/parasitologia , Tisanópteros/fisiologia , Quimera/metabolismo , Quimera/parasitologia , Flores/química , Flores/genética , Flores/metabolismo , Flores/parasitologia , Genótipo , Herbivoria , Alcaloides de Pirrolizidina/química , Senécio/química , Senécio/genética
16.
J Pharm Biomed Anal ; 56(2): 165-72, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21664784

RESUMO

A secondary metabolic pattern using ultra-performance liquid chromatography (UPLC)-DAD/ESI-MS was constructed to gain chemical information for authentication of Senecio scandens (SS) and Senecio vulgaris (SV), the two representative species containing hepatotoxic pyrrolizidine alkaloids (HPAs). The metabolic pattern showed three groups of bioactive constituents: phenolic/aromatic acids, flavonoid glycosides and the HPAs. 47 peaks were identified including 19 phenolic/aromatic acids, 10 flavonoid glycosides and 18 PAs by direct comparison with the available reference compounds or deduced from the UV absorption and their ESI-MS fragmentation patterns. The two species could be authenticated diagnostically by their metabolic profiling of the three chromatographic fingerprints. Although both SS and SV contain PAs as the characteristic constituents, only 2 PAs, adonifoline and adonifoline N-oxide were detected in SS, while other 16 PAs were detected in SV, including the highly toxic senecionine, retrorsine, seneciphylline and their corresponding N-oxides. The concentration of PAs in SV is also higher than that in SS. The number and concentration of the phenolic compounds in SS were higher than in SV. Jacaranone derivatives were only detected in SS and jacaranone ethyl ester was detected as the predominant constituent. In the fingerprint of the n-butanol extracts, 10 quercetin and kaempferol glycosides derivatives were detected. 9 were found in SS and only 2 in SV. PAs, jacaranone derivatives and flavonoid glycosides can serve as the metabolic markers to distinguish the Senecio plants from each other, and provide evidence for their clinical application in the consideration of safety and efficacy.


Assuntos
Cromatografia Líquida de Alta Pressão , Preparações de Plantas/química , Alcaloides de Pirrolizidina/análise , Senécio/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Metaboloma , Estrutura Molecular , Preparações de Plantas/toxicidade , Plantas Medicinais , Plantas Tóxicas , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Senécio/classificação , Senécio/metabolismo , Senécio/toxicidade
17.
Int J Phytoremediation ; 13(2): 140-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21598782

RESUMO

The radionuclide content was estimated in the soil of three black sand habitats in the Mediterranean coast of Egypt, namely, sand mounds and coastal sand planes and dunes. In addition, a total of 14 heavy minerals found in the soils were characterized. The soil to plant transfer of uranium and thorium was tested on three black sand species, namely, Cakile maritima Scop., Senecio glaucus L. and Rumex Pictus Forssk. The transfer of thorium and uranium radionuclides from the soil to plant is complex process that is subjected to many variables; among which are the organic matter and clay content of the soil, the type of radionuclides and plant species. The study revealed a strong negative relationship between uranium and thorium uptake by S. glaucus and R. pictus and the clay and organic matter content of soil. Concentration of thorium in the soil has a negative correlation with soil-to-plant transfer factor. The study results suggest the possibility of using black sand species for phytoremediation of soils contaminated with radioactive elements. The potentiality of S. glaucus as phytoremediator of radionuclides polluted soils is greater than R. pictus which in turn outweigh C. maritima.


Assuntos
Brassicaceae/metabolismo , Radioisótopos/metabolismo , Rumex/metabolismo , Senécio/metabolismo , Poluentes Radioativos do Solo/metabolismo , Solo , Silicatos de Alumínio/análise , Biodegradação Ambiental , Argila , Ecossistema , Egito , Mar Mediterrâneo , Minerais/análise , Radioisótopos/análise , Rios , Dióxido de Silício/análise , Solo/análise , Solo/química , Poluentes Radioativos do Solo/análise , Tório/análise , Tório/metabolismo , Urânio/análise , Urânio/metabolismo
18.
Plant Physiol ; 154(3): 1347-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20813907

RESUMO

Fertilization in angiosperms depends on a complex cellular "courtship" between haploid pollen and diploid pistil. These pollen-pistil interactions are regulated by a diversity of molecules, many of which remain to be identified and characterized. Thus, it is unclear to what extent these processes are conserved among angiosperms, a fact confounded by limited sampling across taxa. Here, we report the analysis of pistil-expressed genes in Senecio squalidus (Asteraceae), a species from euasterid II, a major clade for which there are currently no data on pistil-expressed genes. Species from the Asteraceae characteristically have a "semidry stigma," intermediate between the "wet" and "dry" stigmas typical of the majority of angiosperms. Construction of pistil-enriched cDNA libraries for S. squalidus allowed us to address two hypotheses: (1) stigmas of S. squalidus will express genes common to wet and dry stigmas and genes specific to the semidry stigma characteristic of the Asteraceae; and (2) genes potentially essential for pistil function will be conserved between diverse angiosperm groups and therefore common to all currently available pistil transcriptome data sets, including S. squalidus. Our data support both these hypotheses. The S. squalidus pistil transcriptome contains novel genes and genes previously identified in pistils of species with dry stigmas and wet stigmas. Comparative analysis of the five pistil transcriptomes currently available (Oryza sativa, Crocus sativus, Arabidopsis thaliana, Nicotiana tabacum, and S. squalidus), representing four major angiosperm clades and the three stigma states, identified novel genes and conserved genes potentially regulating pollen-pistil interaction pathways common to monocots and eudicots.


Assuntos
Flores/metabolismo , Perfilação da Expressão Gênica , Senécio/genética , Arabidopsis/genética , Hibridização Genômica Comparativa , Crocus/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , RNA de Plantas/genética , Senécio/metabolismo , Alinhamento de Sequência , Nicotiana/genética
19.
J Chem Ecol ; 36(4): 378-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20309618

RESUMO

We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F(1) hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F(1) hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection.


Assuntos
Alcaloides de Pirrolizidina/metabolismo , Senécio/metabolismo , Meio Ambiente , Hibridização Genética , Senécio/genética , Especificidade da Espécie
20.
Sex Plant Reprod ; 23(3): 173-86, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20182753

RESUMO

Two related flower-expressed gene copies belonging to the SF21 (sunflower-21) gene family have been isolated from Senecio squalidus (Oxford Ragwort, Asteraceae). These gene copies are differentially expressed in pollen and pistil tissues; ORSF21B (Oxford Ragwort SF21B) is expressed exclusively in mature pollen, whereas ORSF21A (Oxford Ragwort SF21A) is expressed in the transmitting tissue of the style, where it is developmentally regulated. Despite differences in expression, the coding regions of ORSF21A and ORSF21B are highly similar. Amino acid sequence alignments of SF21 genes from a number of angiosperm species indicate that this gene family is conserved in flowering plants and may play an important role in reproductive processes in a wide range of taxa. Phylogenetic analysis of SF21 nucleotide sequence alignments supports this theory, and indicates a complicated history of evolution of this gene family in angiosperms. The putative roles of SF21 genes in reproduction and pollen-pistil interactions are discussed.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Senécio/genética , Sequência de Aminoácidos , Sequência de Bases , Flores/química , Flores/metabolismo , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pólen/química , Pólen/genética , Pólen/metabolismo , Senécio/química , Senécio/classificação , Senécio/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...