Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
1.
Mol Plant Pathol ; 25(7): e13494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39003585

RESUMO

Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.


Assuntos
Membrana Celular , Elongases de Ácidos Graxos , Proteínas Fúngicas , Oryza , Doenças das Plantas , Membrana Celular/metabolismo , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Septinas/metabolismo , Septinas/genética , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/genética
2.
Drug Discov Ther ; 18(3): 207-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987209

RESUMO

Aortic aneurysm and aortic dissection (AAD) are severe life-threatening cardiovascular disorders for which no approved pharmaceutical therapies are currently available. Protein S-nitrosylation (SNO) is a typical redox-dependent posttranslational modification whose role in AAD has yet to be described. Recently, Zhang et al. revealed for the first time that SNO modification of macrophage cytoskeletal protein septin2 promotes vascular inflammation and extracellular matrix degradation in aortic aneurysm. Mechanically, the TIAM1-RAC1(T lymphoma invasion and metastasis-inducing protein 1-Ras-related C3 botulinum toxin substrate 1) axis participates in the progression of AAD induced with S-nitrosylated septin2. More importantly, developing R-ketorolac and NSC23766 compounds that specifically target the TIAM1-RAC1 pathway may be new a potential strategy for alleviating AAD.


Assuntos
Dissecção Aórtica , Septinas , Animais , Humanos , Aneurisma Aórtico/tratamento farmacológico , Aneurisma Aórtico/metabolismo , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/metabolismo , Terapia de Alvo Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Septinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo
3.
Sci Rep ; 14(1): 14361, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906977

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes mellitus (T2DM) that causes peripheral and autonomic nervous system dysfunction. Dysregulation of miRNAs plays a crucial role in DPN development. However, the role of miR-503-5p in DPN remains unknown. Herein, T2DM mice (db/db) were used as a DPN model in vivo, and astrocytes isolated from db/db mice were induced with high glucose levels as a DPN model in vitro. MiR-503-5p expression was analyzed using qRT-PCR. GFAP, MCP-1, and SEPT9 protein levels were analyzed using western blotting and immunofluorescence. Luciferase assays were performed to investigate the interaction between miR-503-5p and SEPT9. We found that miR-503-5p expression decreased in the spinal cord of DPN model mice and astrocytes treated with high glucose (HG). The db/db mice displayed higher body weight and blood glucose, lower mechanical withdrawal threshold and thermal withdrawal latency, and higher GFAP and MCP-1 protein levels than db/m mice. However, tail vein injection of agomiR-503-5p remarkably reversed these parameters, whereas antigomiR-503-5p enhanced them. HG markedly facilitated GFAP and MCP-1 protein expression in astrocytes, whereas miR-503-5p mimic or inhibitor transfection markedly blocked or elevated GFAP and MCP-1 protein expression, respectively, in astrocytes with HG. SEPT9 was a target of miR-503-5p. In addition, SEPT9 protein levels were found to be elevated in db/db mice and astrocytes treated with HG. Treatment with agomiR-503-5p and miR-503-5p mimic was able to reduce SEPT9 protein levels, whereas treatment with antigomiR-503-5p and miR-503-5p inhibitor led to inhibition of the protein. Furthermore, SEPT9 overexpression suppressed the depressing effect of miR-503-5p overexpression in astrocytes subjected to HG doses. In conclusion, miR-503-5p was found to alleviate peripheral neuropathy-induced neuropathic pain in T2DM mice by regulating SEPT9 expression.


Assuntos
Astrócitos , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , MicroRNAs , Septinas , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/etiologia , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/etiologia , Septinas/genética , Septinas/metabolismo
4.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870534

RESUMO

Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.


Assuntos
Proteínas de Membrana , Camundongos Knockout , Membrana Nuclear , Septinas , Cabeça do Espermatozoide , Cauda do Espermatozoide , Animais , Humanos , Masculino , Camundongos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Membrana Nuclear/metabolismo , Septinas/metabolismo , Septinas/genética , Cabeça do Espermatozoide/metabolismo , Cabeça do Espermatozoide/patologia , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Teratozoospermia/metabolismo , Teratozoospermia/genética
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928487

RESUMO

Tissue biopsy remains the standard for diagnosing gastrointestinal stromal tumors (GISTs), although liquid biopsy is emerging as a promising alternative in oncology. In this pilot study, we advocate for droplet digital PCR (ddPCR) to diagnose GIST in tissue samples and explore its potential for early diagnosis via liquid biopsy, focusing on the PDGFRA D842V mutation and SEPT9 hypermethylated gene. We utilized ddPCR to analyze the predominant PDGFRA mutation (D842V) in surgical tissue samples from 15 GIST patients, correlating with pathologists' diagnoses. We expanded our analysis to plasma samples to compare DNA alterations between tumor tissue and plasma, also investigating SEPT9 gene hypermethylation. We successfully detected the PDGFRA D842V mutation in GIST tissues by ddPCR. Despite various protocols to enhance mutation detection in early-stage disease, it remained challenging, likely due to the low concentration of DNA in plasma samples. Additionally, the results of Area Under the Curve (AUC) for the hypermethylated SEPT9 gene, analyzing concentration, ratio, and abundance were 0.74 (95% Confidence Interval (CI): 0.52 to 0.97), 0.77 (95% CI: 0.56 to 0.98), and 0.79 (95% CI: 0.59 to 0.99), respectively. As a rare disease, the early detection of GIST through such biomarkers is particularly crucial, offering significant potential to improve patient outcomes.


Assuntos
Metilação de DNA , Tumores do Estroma Gastrointestinal , Mutação , Reação em Cadeia da Polimerase , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Septinas , Humanos , Septinas/genética , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Metilação de DNA/genética , Biópsia Líquida/métodos , Projetos Piloto , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Idoso , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Biomarcadores Tumorais/genética , Adulto
7.
Cell Rep ; 43(5): 114215, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728140

RESUMO

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.


Assuntos
Actinas , Proteínas de Drosophila , Septinas , Cicatrização , Animais , Septinas/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Actomiosina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos
8.
Science ; 384(6699): eadd6260, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815015

RESUMO

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cálcio , Homeostase , Fármacos Neuroprotetores , Septinas , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Modelos Animais de Doenças , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Septinas/metabolismo , Proteínas tau/metabolismo
9.
Mol Biol Cell ; 35(7): ar94, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696255

RESUMO

Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.


Assuntos
Actinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Divisão Celular , Citocinese , Células Germinativas , Septinas , Animais , Citocinese/fisiologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Septinas/metabolismo , Septinas/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Actinas/metabolismo , Proteínas Contráteis/metabolismo , Actomiosina/metabolismo
10.
J Med Life ; 17(1): 4-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737656

RESUMO

Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Detecção Precoce de Câncer , Epigênese Genética , Septinas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Septinas/genética , Metilação de DNA/genética , Sindecana-2/genética , Vimentina/genética
11.
Cell Chem Biol ; 31(5): 962-972.e4, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759620

RESUMO

The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.


Assuntos
Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Compostos de Fenilureia , Potássio , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Humanos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/química , Animais , Camundongos , Septinas/metabolismo , Inflamassomos/metabolismo , Piridinas/farmacologia , Piridinas/química , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695862

RESUMO

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso , Sarcômeros , Septinas , Animais , Septinas/metabolismo , Septinas/genética , Sarcômeros/metabolismo , Camundongos , Contração Muscular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia
13.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719752

RESUMO

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Assuntos
Adesão Celular , Movimento Celular , Fibroblastos , Adesões Focais , Proteínas com Domínio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Adesões Focais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Actinas/metabolismo , Fibras de Estresse/metabolismo
14.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
15.
Eur J Cell Biol ; 103(2): 151416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636185

RESUMO

Airway epithelial cells form a physical barrier against inhaled pathogens and coordinate innate immune responses in the lungs. Bronchial cells in people with cystic fibrosis (pwCF) are colonized by Pseudomonas aeruginosa because of the accumulation of mucus in the lower airways and an altered immune response. This leads to chronic inflammation, lung tissue damage, and accelerated decline in lung function. Thus, identifying the molecular factors involved in the host response in the airways is crucial for developing new therapeutic strategies. The septin (SEPT) cytoskeleton is involved in tissue barrier integrity and anti-infective responses. SEPT7 is critical for maintaining SEPT complexes and for sensing pathogenic microbes. In the lungs, SEPT7 may be involved in the epithelial barrier resistance to infection; however, its role in cystic fibrosis (CF) P. aeruginosa infection is unknown. This study aimed to investigate the role of SEPT7 in controlling P. aeruginosa infection in bronchial epithelial cells, particularly in CF. The study findings showed that SEPT7 encages P. aeruginosa in bronchial epithelial cells and its inhibition downregulates the expression of other SEPTs. In addition, P. aeruginosa does not regulate SEPT7 expression. Finally, we found that inhibiting SEPT7 expression in bronchial epithelial cells (BEAS-2B 16HBE14o- and primary cells) resulted in higher levels of internalized P. aeruginosa and decreased IL-6 production during infection, suggesting a crucial role of SEPT7 in the host response against this bacterium. However, these effects were not observed in the CF cells (16HBE14o-/F508del and primary cells) which may explain the persistence of infection in pwCF. The study findings suggest the modification of SEPT7 expression as a potential approach for the anti-infective control of P. aeruginosa, particularly in CF.


Assuntos
Brônquios , Fibrose Cística , Células Epiteliais , Pseudomonas aeruginosa , Septinas , Pseudomonas aeruginosa/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Humanos , Septinas/metabolismo , Septinas/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Brônquios/microbiologia , Brônquios/patologia , Brônquios/metabolismo , Brônquios/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Linhagem Celular
16.
Biomarkers ; 29(4): 194-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644767

RESUMO

INTRODUCTION: Methylated circulating tumour DNA (ctDNA) blood tests for BCAT1/IKZF1 (COLVERA) and SEPT9 (Epi proColon) are used to detect colorectal cancer (CRC). However, there are no ctDNA assays approved for other gastrointestinal adenocarcinomas. We aimed to characterize BCAT1, IKZF1 and SEPT9 methylation in different gastrointestinal adenocarcinoma and non-gastrointestinal tumours to determine if these validated CRC biomarkers might be useful for pan-gastrointestinal adenocarcinoma detection. METHODS: Tissue DNA methylation data from colorectal (COAD, READ), gastroesophageal (ESCA, STAD), pancreatic (PAAD) and cholangiocarcinoma (CHOL) adenocarcinoma cohorts within The Cancer Genome Atlas were used for differential methylation analyses. Clinicodemographic predictors of BCAT1, IKZF1 and SEPT9 methylation, and the selectivity of hypermethylated BCAT1, IKZF1 and SEPT9 for colorectal adenocarcinomas in comparison to other cancers were each explored with beta regression. RESULTS: Hypermethylated BCAT1, IKZF1 and SEPT9 were each differentially methylated in colorectal and gastroesophageal adenocarcinomas. IKZF1 was differentially methylated in pancreatic adenocarcinoma. Hypermethylated DNA biomarkers BCAT1, IKZF1 and SEPT9 were largely stable across different stages of disease and were highly selective for gastrointestinal adenocarcinomas relative to other cancer types. DISCUSSION: Existing CRC methylated ctDNA blood tests for BCAT1/IKZF1 and SEPT9 might be usefully repurposed for use in other gastrointestinal adenocarcinomas and warrant further prospective ctDNA studies.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Metilação de DNA , Neoplasias Gastrointestinais , Fator de Transcrição Ikaros , Septinas , Humanos , Septinas/genética , Septinas/sangue , Fator de Transcrição Ikaros/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Adenocarcinoma/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/sangue , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/sangue , Masculino , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/sangue , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue
18.
Methods Mol Biol ; 2794: 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630222

RESUMO

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Assuntos
Cinesinas , Septinas , Microtúbulos , Citoesqueleto , Proteínas Associadas aos Microtúbulos
19.
BMC Med Genomics ; 17(1): 117, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689296

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the significant global health concerns with an increase in cases. Regular screening tests are crucial for early detection as it is often asymptomatic in the initial stages. Liquid biopsies, a non-invasive approach that examines biomarkers in biofluids, offer a promising future in diagnosing and screening cancer. Circulating-tumour DNA (ctDNA) is the genetic material in biofluids released into the circulatory system by cells. ctDNA is a promising marker for monitoring patients since cancer cells display distinct DNA methylation patterns compared to normal cells. The potential of our research to contribute to early detection and improved patient outcomes is significant. AIMS: The primary objective of this research project was to explore the HAND1 methylation levels in plasma ctDNA as a potential biomarker for diagnosing CRC and evaluate the methylation level of the well-established gene SPET9 to compare it with the methylation level of HAND1. MATERIALS AND METHODS: Plasma samples were collected from 30 CRC patients and 15 healthy individuals, with CRC samples obtained pre-treatment. ctDNA was extracted and treated with bisulfite for methylation status assessment. Quantitative methylation-specific PCR (qMS-PCR) was performed for HAND1 and SEPT9, using ß-actin (ACTB gene) as a reference. The study aims to evaluate the potential of these genes as diagnostic biomarkers for CRC, contributing to early detection and improved patient outcomes. RESULTS: Our study yielded significant results: 90% of CRC patients (27 out of 30) had hypermethylation in the SEPT9 gene, and 83% (25 out of 30) exhibited hypermethylation in the HAND1 gene. The methylation levels of both genes were significantly higher in CRC patients than in healthy donors. These findings underscore the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC, potentially leading to early detection and improved patient outcomes. CONCLUSION: These findings highlight the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC. However, further research and validation studies are needed to confirm these findings and to explore their clinical utility in CRC diagnosis and management.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Colorretais , Metilação de DNA , Detecção Precoce de Câncer , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Masculino , Feminino , Pessoa de Meia-Idade , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Idoso , Septinas/genética , Septinas/sangue , Estudos de Casos e Controles
20.
Nat Commun ; 15(1): 3383, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649354

RESUMO

A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.


Assuntos
Citocinese , Proteínas Associadas aos Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Septinas/metabolismo , Septinas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Actomiosina/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Mutação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...