Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.761
Filtrar
1.
Curr Microbiol ; 81(6): 153, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652152

RESUMO

This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.


Assuntos
Arsênio , Bacillus cereus , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/efeitos dos fármacos , Arsênio/metabolismo , Poluentes do Solo/metabolismo , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Biodegradação Ambiental , Sideróforos/metabolismo
2.
Commun Biol ; 7(1): 498, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664541

RESUMO

Siderophore-dependent iron uptake is a mechanism by which microorganisms scavenge and utilize iron for their survival, growth, and many specialized activities, such as pathogenicity. The siderophore biosynthetic system PubABC in Shewanella can synthesize a series of distinct siderophores, yet how it is regulated in response to iron availability remains largely unexplored. Here, by whole genome screening we identify TCS components histidine kinase (HK) BarA and response regulator (RR) SsoR as positive regulators of siderophore biosynthesis. While BarA partners with UvrY to mediate expression of pubABC post-transcriptionally via the Csr regulatory cascade, SsoR is an atypical orphan RR of the OmpR/PhoB subfamily that activates transcription in a phosphorylation-independent manner. By combining structural analysis and molecular dynamics simulations, we observe conformational changes in OmpR/PhoB-like RRs that illustrate the impact of phosphorylation on dynamic properties, and that SsoR is locked in the 'phosphorylated' state found in phosphorylation-dependent counterparts of the same subfamily. Furthermore, we show that iron homeostasis global regulator Fur, in addition to mediating transcription of its own regulon, acts as the sensor of iron starvation to increase SsoR production when needed. Overall, this study delineates an intricate, multi-tiered transcriptional and post-transcriptional regulatory network that governs siderophore biosynthesis.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Shewanella , Sideróforos , Shewanella/metabolismo , Shewanella/genética , Sideróforos/biossíntese , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Ferro/metabolismo
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
4.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672503

RESUMO

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Assuntos
Antibacterianos , Gálio , Ferro , Compostos Organometálicos , Fenóis , Pseudomonas aeruginosa , Sideróforos , Gálio/química , Gálio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Ferro/metabolismo , Ferro/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Simulação por Computador , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacologia
5.
Cell Rep ; 43(4): 114106, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625795

RESUMO

Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fenóis , Pseudomonas aeruginosa , Sideróforos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Ferro/metabolismo , Tiazóis/metabolismo
6.
BMC Genomics ; 25(1): 399, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658836

RESUMO

BACKGROUND: Endophytic bacteria possess a range of unique characteristics that enable them to successfully interact with their host and survive in adverse environments. This study employed in silico analysis to identify genes, from Bacillus sp. strain MHSD_37, with potential biotechnological applications. RESULTS: The strain presented several endophytic lifestyle genes which encode for motility, quorum sensing, stress response, desiccation tolerance and root colonisation. The presence of plant growth promoting genes such as those involved in nitrogen fixation, nitrate assimilation, siderophores synthesis, seed germination and promotion of root nodule symbionts, was detected. Strain MHSD_37 also possessed genes involved in insect virulence and evasion of defence system. The genome analysis also identified the presence of genes involved in heavy metal tolerance, xenobiotic resistance, and the synthesis of siderophores involved in heavy metal tolerance. Furthermore, LC-MS analysis of the excretome identified secondary metabolites with biological activities such as anti-cancer, antimicrobial and applications as surfactants. CONCLUSIONS: Strain MHSD_37 thereby demonstrated potential biotechnological application in bioremediation, biofertilisation and biocontrol. Moreover, the strain presented genes encoding products with potential novel application in bio-nanotechnology and pharmaceuticals.


Assuntos
Bacillus , Endófitos , Endófitos/genética , Bacillus/genética , Bacillus/metabolismo , Biotecnologia , Simulação por Computador , Genoma Bacteriano , Metabolismo Secundário/genética , Sideróforos/metabolismo
7.
Gene ; 916: 148439, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38583819

RESUMO

The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.


Assuntos
Temperatura Baixa , Fixação de Nitrogênio , Spinacia oleracea/microbiologia , Spinacia oleracea/genética , Germinação , Clorofila/metabolismo , Sideróforos/metabolismo , Folhas de Planta/genética , Ácidos Indolacéticos/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Desenvolvimento Vegetal/genética , Bacillales/genética , Bacillales/metabolismo , Agentes de Controle Biológico
8.
PLoS One ; 19(4): e0302460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683768

RESUMO

The Pb bioremediation mechanism of a multi-metal resistant endophytic bacteria Bacillus sp. strain MHSD_36, isolated from Solanum nigrum, was characterised. The strain tested positive for the presence of plant growth promoters such as indoleacetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, and phosphate solubilization. The experimental data illustrated that exopolysaccharides and cell hydrophobicity played a role in Pb uptake. The data further showed that the cell wall biosorbed a significant amount (71%) of the total Pb (equivalent to 4 mg/L) removed from contaminated water, compared to the cell membrane (11%). As much as 11% of the Pb was recovered from the cytoplasmic fraction, demonstrating the ability of the strain to control the influx of toxic heavy metals into the cell and minimize their negative impacts. Pb biosorption was significantly influenced by the pH and the initial concentration of the toxic ions. Furthermore, the presence of siderophores and biosurfactants, when the strain was growing under Pb stress, was detected through liquid chromatography mass spectrometry. The strain demonstrated a multi-component based Pb biosorption mechanism and thus, has a great potential for application in heavy metal bioremediation.


Assuntos
Bacillus , Biodegradação Ambiental , Chumbo , Solanum nigrum , Poluentes Químicos da Água , Solanum nigrum/metabolismo , Solanum nigrum/microbiologia , Chumbo/metabolismo , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Sideróforos/metabolismo , Concentração de Íons de Hidrogênio
9.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38425033

RESUMO

The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.


Assuntos
Mycobacteriaceae , Mycobacterium tuberculosis , Tuberculose , Humanos , Pandemias , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Sideróforos/metabolismo , Ferro/metabolismo , Dissulfetos/metabolismo , Proteínas de Bactérias/metabolismo
10.
Acc Chem Res ; 57(7): 1046-1056, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483177

RESUMO

ConspectusSiderophores are secondary metabolites utilized by bacteria to acquire iron (Fe), an essential transition metal nutrient. Fe levels in the host environment are tightly regulated and can be further restricted to starve invading bacterial pathogens in a host-defense process known as nutritional immunity. To survive and colonize the Fe-limited host environment, bacteria produce siderophores and express cognate siderophore transport machinery. These active transport pathways present an opportunity for selective and efficient drug delivery into bacterial cells, motivating decades of research on synthetic siderophore-antibiotic conjugates (SACs) as a Trojan-horse strategy for the development of targeted antibiotics.Enterobactin (Ent) is a triscatecholate siderophore produced and utilized by many Gram-negative bacteria, including all Escherichia coli and Salmonella species. Within these species, pathogenic strains cause a variety of human diseases including urinary tract infections, gastroenteritis, and sepsis. Infections caused by these Gram-negative pathogens can be difficult to treat because of the impermeability of the outer membrane (OM). This impermeability can be overcome by utilizing siderophores as drug delivery vectors for targeting Gram-negative pathogens. Ent is a promising delivery vector because it undergoes active transport across the OM mediated by the Ent uptake machinery after scavenging Fe(III) from the extracellular environment. Despite the well-elucidated chemistry and biology of Ent, its use for SAC development was hampered by the lack of an appropriate functional group for cargo attachment. Our laboratory addressed this need by designing and synthesizing monofunctionalized Ent scaffolds. Over the past decade, we have used these scaffolds to explore Ent-based SACs with a variety of drug warheads, including ß-lactam and fluoroquinolone antibiotics, and Pt(IV) prodrugs. Investigations of the antibacterial activities of these conjugates and their cellular fates have informed our design principles and revealed approaches to achieving enhanced antibacterial potency and pathogen-targeted activity. Collectively, our studies of Ent-drug conjugates have provided discoveries, understanding, and invaluable insights for future design and evaluation of SACs.In this Account, we present the story of our work on Ent-drug conjugates that began about ten years ago with the development of monofunctionalized Ent scaffolds and the design and synthesis of various conjugates based on these scaffolds. We describe the antibacterial activity profiles and uptake pathways of Ent-drug conjugates harboring traditional antibiotics and repurposed platinum anticancer agents as well as studies that address cellular targets and fates. Finally, we discuss other applications of monofunctionalized Ent scaffolds, including a siderophore-based immunization strategy. We intend for this Account to inspire further investigations into the fundamental understanding and translational applications of siderophores and siderophore-drug conjugates.


Assuntos
Enterobactina , Compostos Férricos , Humanos , Enterobactina/química , Enterobactina/metabolismo , Preparações Farmacêuticas , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Escherichia coli/metabolismo
11.
Commun Biol ; 7(1): 295, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461208

RESUMO

Pseudomonas aeruginosa, a common nosocomial pathogen, relies on siderophores to acquire iron, crucial for its survival in various environments and during host infections. However, understanding the molecular mechanisms of siderophore regulation remains incomplete. In this study, we found that the BfmRS two-component system, previously associated with biofilm formation and quorum sensing, is essential for siderophore regulation under high osmolality stress. Activated BfmR directly bound to the promoter regions of pvd, fpv, and femARI gene clusters, thereby activating their transcription and promoting siderophore production. Subsequent proteomic and phenotypic analyses confirmed that deletion of BfmRS reduces siderophore-related proteins and impairs bacterial survival in iron-deficient conditions. Furthermore, phylogenetic analysis demonstrated the high conservation of the BfmRS system across Pseudomonas species, functional evidences also indicated that BfmR homologues from Pseudomonas putida KT2440 and Pseudomonas sp. MRSN12121 could bind to the promoter regions of key siderophore genes and osmolality-mediated increases in siderophore production were observed. This work illuminates a novel signaling pathway for siderophore regulation and enhances our understanding of siderophore-mediated bacterial interactions and community establishment.


Assuntos
Infecções por Pseudomonas , Sideróforos , Humanos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pressão Osmótica , Filogenia , Proteômica , Ferro/metabolismo , Pseudomonas/metabolismo
12.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
13.
Eur J Med Chem ; 269: 116339, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537513

RESUMO

The low permeability of the outer membrane of Gram-negative bacteria is a serious obstacle to the development of new antibiotics against them. Conjugation of antibiotic with siderophore based on the "Trojan horse strategy" is a promising strategy to overcome the outer membrane obstacle. In this study, series of antibacterial agents were designed and synthesized by conjugating the 3-hydroxypyridin-4(1H)-one based siderophores with cajaninstilbene acid (CSA) derivative 4 which shows good activity against Gram-positive bacteria by targeting their cell membranes but is ineffective against Gram-negative bacteria. Compared to the inactive parent compound 4, the conjugates 45c or 45d exhibits significant improvement in activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae and especially P. aeruginosa (minimum inhibitory concentrations, MICs = 7.8-31.25 µM). The antibacterial activity of the conjugates is attributed to the CSA derivative moiety, and the action mechanism is by disruption of bacterial cell membranes. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. In addition, the conjugates 45c and 45d showed a lower cytotoxic effects in vivo and in vitro and a positive therapeutic effect in the treatment of C. elegans infected by P. aeruginosa. Overall, our work describes a new class and a promising 3-hydroxypyridin-4(1H)-one-CSA derivative conjugates for further development as antibacterial agents against Gram-negative bacteria.


Assuntos
Antibacterianos , Salicilatos , Sideróforos , Estilbenos , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sideróforos/farmacologia , Sideróforos/metabolismo , Caenorhabditis elegans/metabolismo , Bactérias Gram-Negativas , Bactérias/metabolismo , Testes de Sensibilidade Microbiana
14.
Appl Environ Microbiol ; 90(3): e0211523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38323847

RESUMO

Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.


Assuntos
Desferroxamina , Peptídeo Sintases , Sideróforos , Humanos , Sideróforos/metabolismo , Desferroxamina/metabolismo , Espectrometria de Massas em Tandem , Ferro/metabolismo , Ácidos Hidroxâmicos
15.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364306

RESUMO

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Assuntos
4-Butirolactona/análogos & derivados , Produtos Biológicos , Complexo Burkholderia cepacia , Burkholderia , Lipopeptídeos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Burkholderia/genética , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Produtos Biológicos/metabolismo , Proteínas de Bactérias/genética
16.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415839

RESUMO

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.


Assuntos
Enterobactina , Evolução Molecular , Óperon , Filogenia , Enterobactina/metabolismo , Enterobactina/genética , Sideróforos/metabolismo , Sideróforos/genética , Genes Fúngicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transferência Genética Horizontal
17.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306233

RESUMO

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Assuntos
Shewanella putrefaciens , Urânio , Biomineralização , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Shewanella putrefaciens/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Urânio/química , Compostos de Ferro/química
18.
Microbiol Spectr ; 12(3): e0369323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311809

RESUMO

The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE: Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.


Assuntos
Fibrose Cística , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Animais , Camundongos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Meios de Cultivo Condicionados/metabolismo , Fibrose Cística/microbiologia , Quelantes de Ferro , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mamíferos
19.
Nat Microbiol ; 9(3): 631-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409256

RESUMO

The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists ß-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.


Assuntos
Antibacterianos , Sideróforos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Cefiderocol , Ferro/metabolismo , Enterobacteriaceae/metabolismo , Pseudomonas aeruginosa/metabolismo
20.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365234

RESUMO

Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.


Assuntos
Bacillus subtilis , Ferro , Ferro/metabolismo , Bacillus subtilis/genética , Sideróforos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...