Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 844
Filtrar
1.
Front Immunol ; 15: 1380628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774866

RESUMO

Introduction: TAM receptor-mediated efferocytosis plays an important function in immune regulation and may contribute to antigen tolerance in the lungs, a site with continuous cellular turnover and generation of apoptotic cells. Some studies have identified failures in efferocytosis as a common driver of inflammation and tissue destruction in lung diseases. Our study is the first to characterize the in vivo function of the TAM receptors, Axl and MerTk, in the innate immune cell compartment, cytokine and chemokine production, as well as the alveolar macrophage (AM) phenotype in different settings in the airways and lung parenchyma. Methods: We employed MerTk and Axl defective mice to induce acute silicosis by a single exposure to crystalline silica particles (20 mg/50 µL). Although both mRNA levels of Axl and MerTk receptors were constitutively expressed by lung cells and isolated AMs, we found that MerTk was critical for maintaining lung homeostasis, whereas Axl played a role in the regulation of silica-induced inflammation. Our findings imply that MerTk and Axl differently modulated inflammatory tone via AM and neutrophil recruitment, phenotype and function by flow cytometry, and TGF-ß and CXCL1 protein levels, respectively. Finally, Axl expression was upregulated in both MerTk-/- and WT AMs, confirming its importance during inflammation. Conclusion: This study provides strong evidence that MerTk and Axl are specialized to orchestrate apoptotic cell clearance across different circumstances and may have important implications for the understanding of pulmonary inflammatory disorders as well as for the development of new approaches to therapy.


Assuntos
Receptor Tirosina Quinase Axl , Homeostase , Pulmão , Macrófagos Alveolares , Camundongos Knockout , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Silicose , c-Mer Tirosina Quinase , Animais , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Silicose/metabolismo , Silicose/imunologia , Silicose/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Camundongos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Modelos Animais de Doenças
2.
Surg Pathol Clin ; 17(2): 193-202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692804

RESUMO

Although silicosis has been an established disease with a recognized cause for more than 100 years, many workers continue to be exposed to silica and new outbreaks of disease continue to occur. This article describes some of the well-established and new exposures, including denim sandblasting, artificial stone cutting, and some forms of "coal worker's pneumoconiosis." The authors review the imaging and pathology of acute silicosis (silicoproteinosis), simple silicosis, and progressive massive fibrosis and summarize known and putative associations of silica exposure, including tuberculosis, lung cancer, connective tissue disease (especially systemic sclerosis), and vasculitis.


Assuntos
Silicose , Silicose/patologia , Silicose/diagnóstico , Silicose/etiologia , Humanos , Exposição Ocupacional/efeitos adversos , Dióxido de Silício/efeitos adversos
3.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
4.
Artigo em Chinês | MEDLINE | ID: mdl-38678001

RESUMO

Silicosis is a common occupational disease, and its main characteristic pathological features are the formation of silicon nodules and diffuse pulmonary fibrosis. In the process of silicosis fibrosis, macrophages can be polarized into M1 macrophages and M2 macrophages. M1 macrophages play a pro-inflammatory role in the early stage of silicosis and release a variety of inflammatory factors, which is the core of inflammatory response. M2 macrophages promote inflammation resolution and tissue repair in silicosis fibrosis stage by secreting anti-inflammatory cytokines and pro-fibrotic mediators. M1/M2 polarization balance plays an important role in the occurrence and development of silicosis, and the regulation of macrophage polarization direction may play a positive role in the prevention and treatment of silicosis fibrosis. In this review, the role of macrophage polarization in silicosis fibrosis, the related signaling pathways regulating macrophage polarization in silicosis fibrosis, and the potential therapeutic targets based on macrophage polarization in silicosis fibrosis are reviewed, with a view to further strengthening the understanding of the mechanism of macrophage polarization in the pathogenesis and treatment of silicosis fibrosis.


Assuntos
Macrófagos , Fibrose Pulmonar , Silicose , Silicose/patologia , Humanos , Fibrose Pulmonar/patologia , Transdução de Sinais , Citocinas/metabolismo
5.
Int Immunopharmacol ; 133: 112067, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608444

RESUMO

Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-ß in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-ß/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.


Assuntos
Transdiferenciação Celular , Fibroblastos , Pulmão , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Animais , Fibroblastos/metabolismo , Proteína Smad3/metabolismo , Proteína Smad3/genética , Proteína Smad2/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Pulmão/patologia , Dióxido de Silício/toxicidade , Camundongos Endogâmicos C57BL , Silicose/metabolismo , Silicose/patologia , Masculino , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Modelos Animais de Doenças , Humanos , Células Cultivadas
6.
Part Fibre Toxicol ; 21(1): 10, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429797

RESUMO

BACKGROUND: Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS: The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS: Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION: Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.


Assuntos
Dióxido de Silício , Silicose , Animais , Ratos , Inflamação/induzido quimicamente , Pulmão , Proteômica , Dióxido de Silício/efeitos adversos , Silicose/patologia , Camundongos
7.
Int J Biol Macromol ; 266(Pt 1): 131058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522707

RESUMO

Long-term exposure to inhalable silica particles may lead to severe systemic pulmonary disease, such as silicosis. Exosomes have been demonstrated to dominate the pathogenesis of silicosis, but the underlying mechanisms remain unclear. Therefore, this study aimed to explore the roles of exosomes by transmitting miR-107, which has been linked to the toxic pulmonary effects of silica particles. We found that miR-107, miR-122-5p, miR-125a-5p, miR-126-5p, and miR-335-5p were elevated in exosomes extracted from the serum of patients with silicosis. Notably, an increase in miR-107 in serum exosomes and lung tissue was observed in the experimental silicosis mouse model, while the inhibition of miR-107 reduced pulmonary fibrosis. Moreover, exosomes helped the migration of miR-107 from macrophages to lung fibroblasts, triggering the transdifferentiation of cell phenotypes. Further experiments demonstrated that miR-107 targets CDK6 and suppresses the expression of retinoblastoma protein phosphorylation and E2F1, resulting in cell-cycle arrest. Overall, micron-grade silica particles induced lung fibrosis through exosomal miR-107 negatively regulating the cell cycle signaling pathway. These findings may open a new avenue for understanding how silicosis is regulated by exosome-mediated cell-to-cell communication and suggest the prospect of exosomes as therapeutic targets.


Assuntos
Exossomos , MicroRNAs , Fibrose Pulmonar , Dióxido de Silício , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Dióxido de Silício/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Camundongos , Humanos , Silicose/metabolismo , Silicose/patologia , Silicose/genética , Silicose/etiologia , Comunicação Celular , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Macrófagos/metabolismo , Pulmão/patologia , Pulmão/metabolismo
8.
Environ Toxicol ; 39(6): 3628-3640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491797

RESUMO

Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-ßRΙ, a key molecule of TGF-ß signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-ßRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-ßRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.


Assuntos
Poeira , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Longo não Codificante , Dióxido de Silício , Silicose , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Dióxido de Silício/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular , Silicose/genética , Silicose/patologia , Animais , Humanos , Ratos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia
9.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397383

RESUMO

Long-term silica particle exposure leads to interstitial pulmonary inflammation and fibrosis, called silicosis. Silica-activated macrophages secrete a wide range of cytokines resulting in persistent inflammation. In addition, silica-stimulated activation of fibroblast is another checkpoint in the progression of silicosis. The pathogenesis after silica exposure is complex, involving intercellular communication and intracellular signaling pathway transduction, which was ignored previously. Exosomes are noteworthy because of their crucial role in intercellular communication by delivering bioactive substances, such as lncRNA. However, the expression profile of exosomal lncRNA in silicosis has not been reported yet. In this study, exosomes were isolated from the peripheral serum of silicosis patients or healthy donors. The exosomal lncRNAs were profiled using high-throughput sequencing technology. Target genes were predicted, and functional annotation was performed using differentially expressed lncRNAs. Eight aberrant expressed exosomal lncRNAs were considered to play a key role in the process of silicosis according to the OPLS-DA. Furthermore, the increased expression of lncRNA MSTRG.43085.16 was testified in vitro. Its target gene PARP1 was critical in regulating apoptosis based on bioinformatics analysis. In addition, the effects of exosomes on macrophage apoptosis and fibroblast activation were checked based on a co-cultured system. Our findings suggested that upregulation of lncRNA MSTRG.43085.16 could regulate silica-induced macrophage apoptosis through elevating PARP1 expression, and promote fibroblast activation, implying that the exosomal lncRNA MSTRG.43085.16 might have potential as a biomarker for the early diagnosis of silicosis.


Assuntos
Exossomos , RNA Longo não Codificante , Silicose , Humanos , Dióxido de Silício , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/genética , Exossomos/metabolismo , Silicose/genética , Silicose/metabolismo , Silicose/patologia , Macrófagos/metabolismo , Fibroblastos/metabolismo , Apoptose/genética
10.
Toxicology ; 504: 153762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403151

RESUMO

Recent research has hinted at a potential connection between silicosis, a fibrotic lung disease caused by exposure to crystalline silica particles, and cuproptosis. The aim of the study was to explore how cuproptosis-related genes (CRGs) may influence the development of silicosis and elucidate the underlying mechanisms. An analysis of genes associated with both silicosis and cuproptosis was conducted. Key gene identification was achieved through the application of two machine learning techniques. Additionally, the correlation between these key genes and immune cell populations was explored and the critical pathways were discerned. To corroborate our findings, the expression of key genes was verified in both a publicly available silica-induced mouse model and our own silicosis mouse model. A total of 12 differentially expressed CRGs associated with silicosis were identified. Further analysis resulted in the identification of 6 CRGs, namely LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2. Elevated immune cell infiltration of CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils in silicosis patients compared to healthy controls was indicated. Validation in a silica-induced pulmonary fibrosis mouse model supported SPARC and MT-CO2 as potential signature genes for the prediction of silicosis. These findings highlight a strong association between silicosis and cuproptosis. Among CRGs, LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2 emerged as pivotal players in the context of silicosis by modulating CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils.


Assuntos
Dióxido de Silício , Silicose , Silicose/genética , Silicose/imunologia , Silicose/patologia , Animais , Dióxido de Silício/toxicidade , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Aprendizado de Máquina , Osteonectina/genética
11.
Int J Mol Med ; 53(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240085

RESUMO

NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle­induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica­treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme­linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time­dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane­distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial­mesenchymal transition (decreased E­Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma­associated oncogene (Shh/Gli) and Wnt/ß­catenin pathways were involved in NLRP3 inflammasome activation­mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle­related chronic inflammatory and fibrotic lung disease.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Inflamassomos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/toxicidade , Proteínas NLR , Proteínas Hedgehog , Pulmão/patologia , Silicose/patologia
12.
Toxicol Lett ; 391: 111-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061438

RESUMO

Silicosis is a common occupational disease caused by the long-term inhalation of large amounts of silica dust. Lipid metabolism plays an important role in the progression of silicosis, but its contributing mechanism remains unclear. The aim of this study was to investigate the differential lipid metabolites and active metabolic pathways in silicosis rat lung tissue. We first constructed a silicosis rat model, and randomly divided 24 male SD rats into control group (C), silicosis group for 1 week (S1W), silicosis group for 2 weeks (S2W) and silicosis group for 4 weeks (S4W) with 6 rats in each group. 1 mL SiO2 suspension (50 mg/mL) or normal saline were injected into the trachea, and the rats were killed at 1 week, 2 weeks and 4 weeks, respectively. The lung tissue pathology of the rats was observed by HE staining and VG staining, and the plasma TC and FC levels were detected by the kit. Western blot was used to detect the expression of lipid-related factors CD36, PGC1α and LXR. In addition, lipidomics analysis of lung tissue samples was performed using UPLC-IMS-QTOF mass spectrometer to screen out potential differential metabolites in silicosis models and analyze lipid enrichment, and verified the expression of differential gene CHPT1 in the metabolic pathway. HE and VG staining showed that the number of nodules and fibrosis increased in a time-dependent manner in the silicosis model group, and the levels of TC, FC and CE in silicosis plasma increased. Western blot results showed that PGC1α and LXR decreased in the silicosis model group, while CD36 expression increased. In addition, metabolomics screened out 28 differential metabolites in the S1W group, 32 in the S2W group, and 22 in the S4W group, and found that the differential metabolites were mainly enriched in metabolic pathways such as glycerophospholipid metabolism and ether lipid metabolism, and the expression of differential gene CHPT1 in the metabolic pathway was decreased in the silicosis model group. These results suggest that there are significant changes in lipid metabolites in lung tissue in silicosis rat models, and glycerophospholipid metabolism was significantly enriched, suggesting that glycerophospholipids play an important role in the progression of silicosis. The differential metabolites and pathways reported in this study may provide new ideas for the pathogenesis of silicosis.


Assuntos
Dióxido de Silício , Silicose , Ratos , Masculino , Animais , Dióxido de Silício/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Ratos Sprague-Dawley , Silicose/patologia , Pulmão/patologia , Metabolômica , Glicerofosfolipídeos/metabolismo , Lipídeos
13.
Sci Total Environ ; 912: 168948, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048996

RESUMO

The widespread manufacture of silica and its extensive use, and potential release of silica into the environment pose a serious human health hazard. Silicosis, a severe global public health issue, is caused by exposure to silica, leading to persistent inflammation and fibrosis of the lungs. The underlying pathogenic mechanisms of silicosis remain elusive. Lung microbiota dysbiosis is associated with the development of inflammation and fibrosis. However, limited information is currently available regarding the role of lung microbiota in silicosis. The study therefore is designed to conduct a comprehensive analysis of the role of lung microbiota dysbiosis and establish a basis for future investigations into the potential mechanisms underlying silicosis. Here, the pathological and biochemical parameters were used to systematically assessed the degree of inflammation and fibrosis following silica exposure and treatment with combined antibiotics. The underlying mechanisms were studied via integrative multi-omics analyses of the transcriptome and microbiome. Analysis of 16S ribosomal DNA revealed dysbiosis of the microbial community in silicosis, characterized by a predominance of gram-negative bacteria. Exposure to silica has been shown to trigger lung inflammation and fibrosis, leading to an increased concentration of lipopolysaccharides in the bronchoalveolar lavage fluid. Furthermore, Toll-like receptor 4 was identified as a key molecule in the lung microbiota dysbiosis associated with silica-induced lung fibrosis. All of these outcomes can be partially controlled through combined antibiotic administration. The study findings demonstrate that the dysbiosis of lung microbiota enhances silica-induced fibrosis associated with the lipopolysaccharides/Toll-like receptor 4 pathway and provided a promising target for therapeutic intervention of silicosis.


Assuntos
Microbiota , Fibrose Pulmonar , Silicose , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Dióxido de Silício/toxicidade , Receptor 4 Toll-Like , Lipopolissacarídeos , Disbiose/induzido quimicamente , Pulmão/patologia , Silicose/genética , Silicose/metabolismo , Silicose/patologia , Inflamação/induzido quimicamente , Fibrose , Transdução de Sinais
14.
Inflammation ; 47(1): 45-59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37938462

RESUMO

Long-term exposure to silica dust can cause silicosis, which is characterized by chronic progressive inflammatory injury, fibroblast activation, and the deposition of extracellular matrix. IRF4 is involved in immune response. However, the potential regulation of IRF4 in silicosis and pulmonary fibrosis remains largely unexplored. In this study, RNA-seq analysis identified the upregulated expression of IRF4 in fibrotic lung tissues of mice exposed to silica particles. And we verified the increased expression of IRF4 in SiO2-treated macrophages and TGF-ß1-treated fibroblasts. We further found that the down-regulation of IRF4 impeded the macrophage polarization and the release of pro-fibrotic factors. Moreover, the down-regulation of IRF4 alleviated the migration, invasion, and the expression of fibrotic molecules in fibroblasts. Using ChIP-qPCR assay, we confirmed that IRF4 regulated the transcriptional activity of the IL-17A promoter, thus stimulated fibroblast activation, migration and invasion. In vivo experiment, the AAV-siIRF4 was designed to interfere with the expression of IRF4 in lung tissues of mice exposed to silica particles. Whole blood, bronchoalveolar lavage fluid and lung tissues were obtained from mice at 7, 14, 28 and 56 days after silica exposure. The results showed that the leukocyte content and inflammatory factors reached a peak at day 14 and remained peak for a long time after IRF4 knockdown. Furthermore, the fibrotic responses of mouse lung tissues were alleviated after IRF4 knockdown. Our study explored the important roles of IRF4 in inflammatory and fibrotic responses, which provided a new target for the treatment of silicosis and pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Pulmão/metabolismo , Silicose/metabolismo , Silicose/patologia , Inflamação/metabolismo , Fibrose , Macrófagos/metabolismo , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL
15.
Cell Cycle ; 22(19): 2113-2118, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37955393

RESUMO

Herein, we reported a rare case of bilateral intrapulmonary metastases spread through air spaces (STAS) and silicosis to advance understanding and knowledge of this disease. A middle-aged man was diagnosed with a left upper lung nodule with bilateral silicosis by preoperative imaging. Local pleural indentation and extensive metastases spread in the visceral pleura were observed during the operation. Pathological examination showed multiple metastases of lung adenocarcinoma, and STAS positive. Genetic testing indicated EGFR mutation, and ektinib was administered. STAS can promote lung cancer, leading to multiple pulmonary metastases, and silicosis can contribute to the carcinogenesis of lung cancer. This case provided valuable clinical lessons. More studies are warranted to elucidate the role and underlying mechanism of silicosis and STAS in the development of lung cancer. More accurate imaging methods and radiographic criteria should be formulated for different diffuse nodules and STAS grades, and the exploration of optimal therapeutic regimens to treat these concomitant patients is urgently needed to improve diagnostic rates and formulate more optimal therapies.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Silicose , Masculino , Pessoa de Meia-Idade , Humanos , Adenocarcinoma/patologia , Estadiamento de Neoplasias , Adenocarcinoma de Pulmão/complicações , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Silicose/patologia , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia
16.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833927

RESUMO

Silicosis is a fatal occupational respiratory disease caused by the prolonged inhalation of respirable silica. The core event of silicosis is the heightened activity of fibroblasts, which excessively synthesize extracellular matrix (ECM) proteins. Our previous studies have highlighted that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) hold promise in mitigating silicosis and the significant role played by microRNAs (miRNAs) in this process. Delving deeper into this mechanism, we found that miR-148a-3p was the most abundant miRNA of the differential miRNAs in hucMSC-EVs, with the gene heat shock protein 90 beta family member 1 (Hsp90b1) as a potential target. Notably, miR-148a-3p's expression was downregulated during the progression of silica-induced pulmonary fibrosis both in vitro and in vivo, but was restored after hucMSC-EVs treatment (p < 0.05). Introducing miR-148a-3p mimics effectively hindered the collagen synthesis and secretion of fibroblasts induced by transforming growth factor-ß1 (TGF-ß1) (p < 0.05). Confirming our hypothesis, Hsp90b1 was indeed targeted by miR-148a-3p, with significantly reduced collagen activity in TGF-ß1-treated fibroblasts upon Hsp90b1 inhibition (p < 0.05). Collectively, our findings provide compelling evidence that links miR-148a-3p present in hucMSC-EVs with the amelioration of silicosis, suggesting its therapeutic potential by specifically targeting Hsp90b1, thereby inhibiting fibroblast collagen activities. This study sheds light on the role of miR-148a-3p in hucMSC-EVs, opening avenues for innovative therapeutic interventions targeting molecular pathways in pulmonary fibrosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Fibrose Pulmonar , Silicose , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Fator de Crescimento Transformador beta1/metabolismo , Dióxido de Silício/farmacologia , MicroRNAs/metabolismo , Silicose/genética , Silicose/terapia , Silicose/patologia , Fibroblastos/metabolismo , Colágeno/farmacologia , Vesículas Extracelulares/metabolismo
17.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709227

RESUMO

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Pneumonia , Silicose , Camundongos , Animais , Pulmão , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Silicose/terapia , Silicose/metabolismo , Silicose/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Macrófagos , Inflamação/patologia , Anti-Inflamatórios/farmacologia
18.
Eur Respir Rev ; 32(169)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37558264

RESUMO

Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.


Assuntos
Silicose , Peixe-Zebra , Animais , Humanos , Modelos Animais de Doenças , Dióxido de Silício , Silicose/tratamento farmacológico , Silicose/genética , Silicose/patologia , Peixe-Zebra/genética
19.
Toxicol Sci ; 195(1): 71-86, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37399107

RESUMO

Silicosis is a global occupational pulmonary disease due to the accumulation of silica dust in the lung. Lacking effective clinical drugs makes the treatment of this disease quite challenging in clinics largely because the pathogenic mechanisms remain obscure. Interleukin 33 (IL33), a pleiotropic cytokine, could promote wound healing and tissue repair via the receptor ST2. However, the mechanisms governing the involvement of IL33 in silicosis progression remain to be further explored. Here, we demonstrated that the IL33 levels in the lung sections were significantly overexpressed after bleomycin and silica treatment. Chromatin immunoprecipitation assay, knockdown, and reverse experiments were performed in lung fibroblasts to prove gene interaction following exogenous IL33 treatment or cocultured with silica-treated lung epithelial cells. Mechanistically, we illustrated that silica-stimulated lung epithelial cells secreted IL33 and further promoted the activation, proliferation, and migration of pulmonary fibroblasts by activating the ERK/AP-1/NPM1 signaling pathway in vitro. And more, treatment with NPM1 siRNA-loaded liposomes markedly protected mice from silica-induced pulmonary fibrosis in vivo. In conclusion, the involvement of NPM1 in the progression of silicosis is regulated by the IL33/ERK/AP-1 signaling axis, which is the potential therapeutic target candidate in developing novel antifibrotic strategies for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Animais , Camundongos , Fibroblastos , Fibrose , Interleucina-33/genética , Pulmão , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Dióxido de Silício/toxicidade , Silicose/patologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia
20.
Part Fibre Toxicol ; 20(1): 29, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468937

RESUMO

Chronic exposure to silica can lead to silicosis, one of the most serious occupational lung diseases worldwide, for which there is a lack of effective therapeutic drugs and tools. Epithelial mesenchymal transition plays an important role in several diseases; however, data on the specific mechanisms in silicosis models are scarce. We elucidated the pathogenesis of pulmonary fibrosis via single-cell transcriptome sequencing and constructed an experimental silicosis mouse model to explore the specific molecular mechanisms affecting epithelial mesenchymal transition at the single-cell level. Notably, as silicosis progressed, glycoprotein non-metastatic melanoma protein B (GPNMB) exerted a sustained amplification effect on alveolar type II epithelial cells, inducing epithelial-to-mesenchymal transition by accelerating cell proliferation and migration and increasing mesenchymal markers, ultimately leading to persistent pulmonary pathological changes. GPNMB participates in the epithelial-mesenchymal transition in distant lung epithelial cells by releasing extracellular vesicles to accelerate silicosis. These vesicles are involved in abnormal changes in the composition of the extracellular matrix and collagen structure. Our results suggest that GPNMB is a potential target for fibrosis prevention.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Transcriptoma , Silicose/genética , Silicose/patologia , Pulmão , Fibrose Pulmonar/metabolismo , Dióxido de Silício/metabolismo , Células Epiteliais , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...