Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
1.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37563251

RESUMO

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Humanos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Membro 3 da Família 12 de Carreador de Soluto , Cátions/metabolismo
2.
Kidney360 ; 5(1): 133-141, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968800

RESUMO

The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Animais , Humanos , Cátions/metabolismo , Cloretos/metabolismo , Diuréticos/metabolismo , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas/metabolismo , Membro 1 da Família 12 de Carreador de Soluto
3.
Aging (Albany NY) ; 15(24): 15419-15433, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38157260

RESUMO

OBJECTIVE: The goal of the study is to assess the clinical value and the potential mechanism of SLC12A9 combing transcriptome and single cell sequencing data. METHODS: In this study, the expression level and the receiver operating characteristic curve analysis of SLC12A9 in CRC and normal tissue were analyzed in multiple data cohort. The standardized mean difference (SMD) calculation and the summary receiver operating characteristic (SROC) analysis were performed further to detect its diagnostic ability and expression level. KM survival analysis was performed to assess the prognosis value of SLC12A9. The expression level of SLC12A9 in different clinical characteristics was analyzed to explore the clinical value. Single cell data was studied to reveal the potential mechanism of SLC12A9. The correlation analysis of immunoinfiltration was performed to detect the potential immune cell related to SLC12A9. The nomogram was drawn to assess the probable mortality rate of CRC patient. RESULTS: We found that SLC12A9 was significantly up-regulated with the moderate diagnostic value in CRC. Patients with overexpressed SLC12A9 had a worse prognosis. SLC12A9 was related to Age, Pathologic N stage, Pathologic M stage, Lymphatic invasion and Pathologic stage (p < 0.05). The 1, 3 and 5-year survival rates of patient named TCGA-G4-6309 are 0.959, 0.897 and 0.827. PCR also showed that SLC12A9 was overexpressed in CRC comparing with normal tissue. CONCLUSION: In conclusion, our study comprehensively analyzed the clinical value of SLC12A9 and its potential mechanism, as well as immune cell infiltration, which may accelerate the diagnosis and improve the prognosis of CRC.


Assuntos
Neoplasias Colorretais , Nomogramas , Simportadores de Cloreto de Sódio-Potássio , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Prognóstico , Curva ROC , Análise de Sobrevida , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1613-1621, 2023 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-37814877

RESUMO

OBJECTIVE: To investigate the role of solute carrier family 12 member A8 (SLC12A8) in regulation of biological behaviors of bladder cancer and the mechanism mediating its effect. METHODS: The TCGA database was used to analyze SLC12A8 expression in bladder cancer and is correlation with prognosis and clinicopathological characteristics of the patients. In different bladder cancer cell lines, the effects of transient transfection with SLC12A8 siRNA on cell proliferation, invasion and migration ability were examined using CCK-8 assay, Transwell assay and scratch experiment. Gene set enrichment analysis (GSEA) was carried out to analyze pathway enrichment. The correlation of SLC12A8 with the expressions of epithelial-mesenchymal transition (EMT) markers was analyzed using Western blotting. The effect of colivelin on biological behaviors of the cells with SLC12A8 knockdown was assessed using CCK-8 and Transwell assays. RESULTS: SLC12A8 was highly expressed in bladder cancer (P<0.05) and associated with a poor prognosis and advanced pathological stages of the patients (P<0.05), and could serve as an independent prognostic factor. The bladder cancer cell lines with SLC12A8 knockdown showed significantly attenuated proliferation, invasion and migration capacities (P<0.05). GSEA identified significant gene enrichment in the JAK/STAT signaling pathway (P=0.008). Correlation analysis showed that SLC12A8 expression was negatively correlated with E- cadherin expression (r=-0.167, P<0.001) but positively with N-cadherin (r=0.306, P<0.001) and vimentin (r=0.358, P<0.001) expressions. The bladder cancer cells with SLC12A8 knockdown showed significantly decreased expressions of p-Jak2, p-Stat3, N-cadherin and vimentin proteins with an increased expression of E-cadherin. Treatment with colivelin effectively enhanced proliferation, invasion and migration capacities of the bladder cancer cells with SLC12A8 knockdown (P<0.05). CONCLUSION: SLC12A8 promotes bladder cancer progression by activating the JAK/STAT signaling pathway and its high expression is closely associated with a poor prognosis of the patients.


Assuntos
Transição Epitelial-Mesenquimal , Simportadores de Cloreto de Sódio-Potássio , Neoplasias da Bexiga Urinária , Humanos , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Neoplasias da Bexiga Urinária/genética , Vimentina/metabolismo
5.
Sci Rep ; 13(1): 5685, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069177

RESUMO

Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the maternally expressed UBE3A gene. Treatments for the main manifestations, including cognitive dysfunction or epilepsy, are still under development. Recently, the Cl- importer Na+-K+-Cl- cotransporter 1 (NKCC1) and the Cl- exporter K+-Cl- cotransporter 2 (KCC2) have garnered attention as therapeutic targets for many neurological disorders. Dysregulation of neuronal intracellular Cl- concentration ([Cl-]i) is generally regarded as one of the mechanisms underlying neuronal dysfunction caused by imbalanced expression of these cation-chloride cotransporters (CCCs). Here, we analyzed the regulation of [Cl-]i and the effects of bumetanide, an NKCC1 inhibitor, in Angelman syndrome models (Ube3am-/p+ mice). We observed increased NKCC1 expression and decreased KCC2 expression in the hippocampi of Ube3am-/p+ mice. The average [Cl-]i of CA1 pyramidal neurons was not significantly different but demonstrated greater variance in Ube3am-/p+ mice. Tonic GABAA receptor-mediated Cl- conductance was reduced, which may have contributed to maintaining the normal average [Cl-]i. Bumetanide administration restores cognitive dysfunction in Ube3am-/p+ mice. Seizure susceptibility was also reduced regardless of the genotype. These results suggest that an imbalanced expression of CCCs is involved in the pathophysiological mechanism of Ube3am-/p+ mice, although the average [Cl-]i is not altered. The blockage of NKCC1 may be a potential therapeutic strategy for patients with Angelman syndrome.


Assuntos
Síndrome de Angelman , Epilepsia , Simportadores , Camundongos , Animais , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Bumetanida/farmacologia , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Cloretos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/genética , Receptores de GABA-A
6.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
7.
Am J Physiol Renal Physiol ; 324(5): F446-F460, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892908

RESUMO

The thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. The function of the TAL depends on the activity of the bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), which is highly abundant in the luminal membrane of TAL cells. TAL function is regulated by various hormonal and nonhormonal factors. However, many of the underlying signal transduction pathways remain elusive. Here, we describe and characterize a novel gene-modified mouse model for an inducible and specific Cre/Lox-mediated gene modification in the TAL. In these mice, tamoxifen-dependent Cre (CreERT2) was inserted into the 3'-untranslated region of the Slc12a1 gene, which encodes NKCC2 (Slc12a1-CreERT2). Although this gene modification strategy slightly reduced endogenous NKCC2 expression at the mRNA and protein levels, the lowered NKCC2 abundance was not associated with altered urinary fluid and ion excretion, urinary concentration, and the renal response to loop diuretics. Immunohistochemistry on kidneys from Slc12a1-CreERT2 mice revealed strong Cre expression exclusively in TAL cells but not in any other nephron portion. Cross-breeding of these mice with the mT/mG reporter mouse line showed a very low recombination rate (∼0% in male mice and <3% in female mice) at baseline but complete (∼100%) recombination after repeated tamoxifen administration in male and female mice. The achieved recombination encompassed the entire TAL and also included the macula densa. Thus, the new Slc12a1-CreERT2 mouse line allows inducible and very efficient gene targeting in the TAL and hence promises to be a powerful tool to advance our understanding of the regulation of TAL function.NEW & NOTEWORTHY The renal thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. However, the underlying molecular mechanisms that regulate TAL function are incompletely understood. This study describes a novel transgenic mouse model (Slc12a1-creERT2) for inducible and highly efficient gene targeting in the TAL that promises to ease physiological studies on the functional role of candidate regulatory genes.


Assuntos
Rim , Simportadores de Cloreto de Sódio-Potássio , Feminino , Camundongos , Masculino , Animais , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Rim/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sódio/metabolismo , Modelos Animais de Doenças
8.
PLoS Genet ; 19(1): e1010581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626385

RESUMO

Glial cells play a critical role in maintaining homeostatic ion concentration gradients. Salt-inducible kinase 3 (SIK3) regulates a gene expression program that controls K+ buffering in glia, and upregulation of this pathway suppresses seizure behavior in the eag, Shaker hyperexcitability mutant. Here we show that boosting the glial SIK3 K+ buffering pathway suppresses seizures in three additional molecularly diverse hyperexcitable mutants, highlighting the therapeutic potential of upregulating glial K+ buffering. We then explore additional mechanisms regulating glial K+ buffering. Fray, a transcriptional target of the SIK3 K+ buffering program, is a kinase that promotes K+ uptake by activating the Na+/K+/Cl- co-transporter, Ncc69. We show that the Wnk kinase phosphorylates Fray in Drosophila glia and that this activity is required to promote K+ buffering. This identifies Fray as a convergence point between the SIK3-dependent transcriptional program and Wnk-dependent post-translational regulation. Bypassing both regulatory mechanisms via overexpression of a constitutively active Fray in glia is sufficient to robustly suppress seizure behavior in multiple Drosophila models of hyperexcitability. Finally, we identify cortex glia as a critical cell type for regulation of seizure susceptibility, as boosting K+ buffering via expression of activated Fray exclusively in these cells is sufficient to suppress seizure behavior. These findings highlight Fray as a key convergence point for distinct K+ buffering regulatory mechanisms and cortex glia as an important locus for control of neuronal excitability.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Convulsões/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética
9.
J Cell Physiol ; 237(12): 4356-4368, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125923

RESUMO

Bone turnover diseases are exceptionally prevalent in human and come with a high burden on physical health. While these diseases are associated with a variety of risk factors and causes, they are all characterized by common denominators, that is, abnormalities in the function or number of osteoblasts, osteoclasts, and/or osteocytes. As such, much effort has been deployed in the recent years to understand the signaling mechanisms of bone cell proliferation and differentiation with the objectives of exploiting the intermediates involved as therapeutic preys. Ion transport systems at the external and in the intracellular membranes of osteoblasts and osteoclasts also play an important role in bone turnover by coordinating the movement of Ca2+ , PO4 2- , and H+ ions in and out of the osseous matrix. Even if they sustain the terminal steps of osteoformation and osteoresorption, they have been the object of very little attention in the last several years. Members of the cation-Cl- cotransporter (CCC) family are among the systems at work as they are expressed in bone cells, are known to affect the activity of Ca2+ -, PO4 2- -, and H+ -dependent transport systems and have been linked to bone mass density variation in human. In this review, the roles played by the CCCs in bone remodeling will be discussed in light of recent developments and their potential relevance in the treatment of skeletal disorders.


Assuntos
Osteócitos , Simportadores , Humanos , Cátions/metabolismo , Transporte de Íons/fisiologia , Osteócitos/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/metabolismo , Remodelação Óssea , Densidade Óssea
10.
Am J Respir Cell Mol Biol ; 67(4): 491-502, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849656

RESUMO

In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.


Assuntos
Fibrose Cística , Alanina , Bumetanida , Humanos , Concentração de Íons de Hidrogênio , Prolina , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
11.
Curr Biol ; 32(6): 1420-1428.e4, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35303416

RESUMO

Cation chloride cotransporters (CCCs) regulate intracellular chloride ion concentration ([Cl-]i) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA.1 Na+ K+ Cl- (NKCC) and K+ Cl- (KCC) cotransporters transport Cl- into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl-]i can lead to an excitatory and depolarizing response of the neuron upon GABAA receptor opening, while KCC dominance has the opposite effect.1 This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length,2-4 and its dysregulation is associated with neurodevelopmental disorders such as epilepsy.5-8 In Drosophila melanogaster, constant light normally disrupts circadian clock function and leads to arrhythmic behavior.9 Here, we demonstrate a function for CCCs in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of CCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl-]i-dependent manner. Patch-clamp recordings from the large LNv clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC and NKCC downregulation reduces or increases morning behavioral activity during long photoperiods, respectively. In summary, our results support a model in which the regulation of [Cl-]i by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.


Assuntos
Cloretos , Proteínas de Drosophila , Simportadores de Cloreto de Sódio-Potássio , Simportadores , Animais , Cloretos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Locomoção , Proteínas Serina-Treonina Quinases , Receptores de GABA-A , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido gama-Aminobutírico , Cotransportadores de K e Cl-
12.
J Cereb Blood Flow Metab ; 42(4): 584-599, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427145

RESUMO

Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 µM) predisposes an extensive bulk of tissue (4-5 mm2) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm2), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 µM) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury.


Assuntos
Edema Encefálico , Lesões Encefálicas , Animais , Ratos , Astrócitos/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/metabolismo , Edema/metabolismo , Ácido Glutâmico/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
13.
Sci Rep ; 11(1): 22698, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811419

RESUMO

Two orthologues of the gene encoding the Na+-Cl- cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl- cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.


Assuntos
Transporte de Íons/genética , Osmorregulação/genética , Petromyzon/genética , Tolerância ao Sal/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Sequência de Aminoácidos , Animais , Bumetanida/farmacologia , Água Doce/química , Brânquias/metabolismo , Indapamida/farmacologia , Intestinos/metabolismo , Transporte de Íons/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/genética , Petromyzon/metabolismo , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Água do Mar/química , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Água/metabolismo
14.
Bioengineered ; 12(1): 4946-4961, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365894

RESUMO

The solute carrier family has been reported to play critical roles in the progression of several cancers; however, the relationship between solute carrier family 12 member 8 (SLC12A8) and bladder cancer (BC) has not been clearly confirmed. This study explores the prognostic value of SLC12A8 for BC and its correlation with immune cell infiltration. We found that the expression of SLC12A8 mRNA was significantly overexpressed in BC tissues compared with noncancerous tissues in multiple public databases, and the result was validated using real-time PCR and immunohistochemistry (IHC). The Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of SLC12A8 for BC. The high expression of SLC12A8 led to a shorter overall survival time and was an unfavorable prognostic biomarker for BC. The mechanisms of SLC12A8 promoting tumorigenesis were investigated by Gene Set Enrichment Analysis (GSEA). Moreover, the correlations of SLC12A8 expression with the tumor-infiltrating immune cells (TICs) in BC were explored using TIMER 2.0 and CIBERSORT. SLC12A8 was associated with CD4+ T cells, dendritic cells, neutrophils, and macrophages infiltration. The expression of SLC12A8 was positively correlated with crucial immune checkpoint molecules. In conclusion, SLC12A8 might be an unfavorable prognostic biomarker in BC related to tumor immune cell infiltration.


Assuntos
Simportadores de Cloreto de Sódio-Potássio , Neoplasias da Bexiga Urinária , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/imunologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
15.
Acta Physiol (Oxf) ; 233(1): e13705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34114742

RESUMO

AIM: The phosphorylation level of the furosemide-sensitive Na+ -K+ -2Cl- cotransporter (NKCC2) in the thick ascending limb (TAL) is used as a surrogate marker for NKCC2 activation and TAL function. However, in mice, analyses of NKCC2 phosphorylation with antibodies against phosphorylated threonines 96 and 101 (anti-pT96/pT101) give inconsistent results. We aimed (a) to elucidate these inconsistencies and (b) to develop a phosphoform-specific antibody that ensures reliable detection of NKCC2 phosphorylation in mice. METHODS: Genetic information, molecular biology, biochemical techniques and mouse phenotyping was used to study NKCC2 and kidney function in two commonly used mouse strains (ie 129Sv and in C57BL/6 mice). Moreover, a new phosphoform-specific mouse NKCC2 antibody was developed and characterized. RESULTS: Amino acids sequence alignment revealed that C57BL/6 mice have a strain-specific five amino acids deletion (ΔF97-T101) in NKCC2 that diminishes the detection of NKCC2 phosphorylation with previously developed pT96/pT101 NKCC2 antibodies. Instead, the antibodies cross-react with the phosphorylated thiazide-sensitive NaCl cotransporter (NCC), which can obscure interpretation of results. Interestingly, the deletion in NKCC2 does not impact on kidney function and/or expression of renal ion transport proteins as indicated by the analysis of the F2 generation of crossbred 129Sv and C57BL/6 mice. A newly developed pT96 NKCC2 antibody detects pNKCC2 in both mouse strains and shows no cross-reactivity with phosphorylated NCC. CONCLUSION: Our work reveals a hitherto unappreciated, but essential, strain difference in the amino acids sequence of mouse NKCC2 that needs to be considered when analysing NKCC2 phosphorylation in mice. The new pNKCC2 antibody circumvents this technical caveat.


Assuntos
Aminoácidos , Simportadores de Cloreto de Sódio-Potássio , Aminoácidos/metabolismo , Animais , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
16.
Pflugers Arch ; 473(6): 937-951, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33914143

RESUMO

Propionate, a metabolite from the microbial fermentation of carbohydrates, evokes a release of epithelial acetylcholine in rat caecum resulting in an increase of short-circuit current (Isc) in Ussing chamber experiments. The present experiments were performed in order to characterize the ionic mechanisms underlying this response which has been thought to be due to Cl- secretion. As there are regional differences within the caecal epithelium, the experiments were conducted at oral and aboral rat corpus caeci. In both caecal segments, the propionate-induced Isc (IProp) was inhibited by > 85%, when the experiments were performed either in nominally Cl-- or nominally HCO3--free buffer. In the case of Cl-, the dependency was restricted to the presence of Cl- in the serosal bath. Bumetanide, a blocker of the Na+-K+-2Cl--cotransporter, only numerically reduced IProp suggesting that a large part of this current must be carried by an ion other than Cl-. In the aboral caecum, IProp was significantly inhibited by mucosally administered stilbene derivatives (SITS, DIDS, DNDS), which block anion exchangers. Serosal Na+-free buffer reduced IProp significantly in the oral (and numerically also in aboral) corpus caeci. RT-PCR experiments revealed the expression of several forms of Na+-dependent HCO3--cotransporters in caecum, which might underlie the observed Na+ dependency. These results suggest that propionate sensing in caecum is coupled to HCO3- secretion, which functionally would stabilize luminal pH when the microbial fermentation leads to an increase in the concentration of short-chain fatty acids in the caecal lumen.


Assuntos
Bicarbonatos/metabolismo , Ceco/metabolismo , Cloretos/metabolismo , Propionatos/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Acetilcolina/metabolismo , Animais , Bumetanida/farmacologia , Ceco/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
17.
Exp Biol Med (Maywood) ; 246(13): 1554-1562, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794700

RESUMO

Prenatal dexamethasone has been shown to increase blood pressure in male offspring but the mechanism for the increase in blood pressure is unclear. The present study examined if prenatal programming by maternal injection of dexamethasone on days 15 and 16 of gestation affected the blood pressure comparably in female and male offspring. Our hypothesis was that males would be affected by prenatal dexamethasone to a greater extent than females and that either an increase in renal tubular transporter abundance or an increase in renin or aldosterone system would be associated with hypertension with prenatal programming. Prenatal dexamethasone increased blood pressure at two months and six months of age and resulted in proteinuria and albuminuria at six months in male but not female rat offspring. There was no effect of prenatal dexamethasone on blood pressure and proteinuria at one month in male and in female offspring. While prenatal dexamethasone increased male renal thick ascending limb sodium potassium two chloride cotransporter protein abundance at two months, prenatal dexamethasone on days 15 and 16 of gestation did not affect transporter abundance in males at other ages, nor did it affect proximal tubule sodium/hydrogen exchanger or distal convoluted tubule sodium chloride cotransporter protein abundance at any age. There was no difference in systemic renin or aldosterone in the prenatal dexamethasone group compared to same sex controls. In conclusion, male but not female offspring have an increase in blood pressure and urinary protein excretion with prenatal dexamethasone. The increase in blood pressure with prenatal programming was not associated with a consistent increase in renal tubular transporter protein abundance, nor plasma renin activity and serum aldosterone.


Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteinúria/metabolismo , Angiotensinas/metabolismo , Animais , Feminino , Hipertensão/etiologia , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Proteinúria/etiologia , Ratos , Ratos Sprague-Dawley , Renina/metabolismo , Fatores Sexuais , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo
18.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513812

RESUMO

Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Acidente Vascular Cerebral/metabolismo , Simportadores/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Homeostase , Humanos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Transdução de Sinais , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Simportadores de Cloreto de Sódio-Potássio/genética , Acidente Vascular Cerebral/fisiopatologia , Simportadores/genética , Cotransportadores de K e Cl-
19.
Am J Physiol Cell Physiol ; 320(4): C619-C634, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406028

RESUMO

Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCßII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCßII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCßII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCßII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCßII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/toxicidade , Proteínas Imediatamente Precoces/metabolismo , Proteína Quinase C beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/patologia , Bovinos , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Humanos , Fosforilação , Transdução de Sinais , Fatores de Tempo
20.
Physiology (Bethesda) ; 35(6): 415-429, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052775

RESUMO

The Na+-K+-Cl- cotransporters play key physiological and pathophysiological roles by regulating the membrane potential of many cell types and the movement of fluid across a variety of epithelial or endothelial structures. As such, they should soon become invaluable targets for the treatment of various disorders including pain, epilepsy, brain edema, and hypertension. This review highlights the nature of these roles, the mechanisms at play, and the unresolved issues in the field.


Assuntos
Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Cloretos/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/patologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão/patologia , Transporte de Íons , Dor/tratamento farmacológico , Dor/metabolismo , Dor/patologia , Potássio/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...