Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.864
Filtrar
1.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769196

RESUMO

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Assuntos
Isquemia Encefálica , Encéfalo , Cistatina C , Vesículas Extracelulares , Camundongos Endogâmicos C57BL , Sinapses , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Cistatina C/metabolismo , Sinapses/metabolismo , Camundongos , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteômica/métodos , Sinaptossomos/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Células Cultivadas , Modelos Animais de Doenças
2.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696595

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Assuntos
Córtex Pré-Frontal Dorsolateral , Proteômica , Humanos , Criança , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/metabolismo , Pré-Escolar , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Sinapses/metabolismo , Adolescente , Adulto Jovem , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinaptossomos/metabolismo , Córtex Pré-Frontal/metabolismo , Densidade Pós-Sináptica/metabolismo
3.
Genes (Basel) ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674386

RESUMO

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Assuntos
Síndrome de Down , Fluoxetina , Proteômica , Vesículas Sinápticas , Animais , Fluoxetina/farmacologia , Camundongos , Síndrome de Down/metabolismo , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/patologia , Masculino , Proteômica/métodos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteoma/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Trissomia/genética
4.
Methods Mol Biol ; 2754: 445-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512681

RESUMO

Tau protein has important physiological functions at both presynaptic and postsynaptic terminals. Pathological tau species are also associated with synaptic dysfunctions in several neurodegenerative disorders, especially Alzheimer's disease. To understand tau distribution inside synaptic compartments, super-resolution imaging is required. Here, we describe a facile protocol to immobilize and image brain synaptosomes without aggregation artefacts, by substituting the standard fixative paraformaldehyde with ethylene glycol bis(succinimidyl succinate) (EGS). Super-resolution imaging of tau proteins is achieved through three-color direct stochastic optical reconstruction microscopy (dSTORM). Tau protein is found to colocalize with synaptic vesicles as well as postsynaptic densities.


Assuntos
Doença de Alzheimer , Sinaptossomos , Humanos , Sinaptossomos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Vesículas Sinápticas/metabolismo , Encéfalo/metabolismo
5.
Br J Pharmacol ; 181(12): 1812-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369641

RESUMO

BACKGROUND AND PURPOSE: To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH: EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3H]D-aspartate ([3H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS: In healthy mice, complement releases [3H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS: Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.


Assuntos
Complemento C1q , Complemento C3 , Encefalomielite Autoimune Experimental , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Sinaptossomos , Animais , Ácido Glutâmico/metabolismo , Sinaptossomos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Complemento C1q/metabolismo , Complemento C3/metabolismo , Camundongos , Sinapses/metabolismo , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Apoptose , Astrócitos/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
6.
Environ Sci Pollut Res Int ; 31(3): 3512-3525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085481

RESUMO

Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.e. carbon dots obtained by heating of organics, and nanodiamonds, to influence Hg2+-induced neurotoxicity was monitored using biological system, i.e. presynaptic rat cortex nerve terminals. Using HgCl2 and classical reducing/chelating agents, an adequate synaptic parameter, i.e. the extracellular level of key excitatory neurotransmitter L-[14C]glutamate, was selected for further analysis. HgCl2 starting from 5 µM caused an acute and concentration-dependent increase in the extracellular L-[14C]glutamate level in nerve terminals. Combined application of Hg2+ and carbon dots from heating of citric acid/urea showed that this simulant was able to mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals by 37%. These carbon dots and Hg2+ acted as a complex in nerve terminals that was confirmed with fluorimetric data on Hg2+-induced changes in their spectroscopic features. Nanodiamonds and carbon dots from ß-alanine were not able to mitigate a Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals. Developed approach can be applicable for monitoring capability of different particles/compounds to have Hg2+-chelating signs in the biological systems. Therefore, among testing simulants, the only carbon dots from citric acid/urea were able to mitigate acute Hg2+-induced neurotoxicity in nerve terminals, thereby showing a variety of effects of carbonaceous airborne particulate in situ and its potential to interfere and modulate Hg2+-associated health hazard.


Assuntos
Mercúrio , Nanodiamantes , Ratos , Animais , Ratos Wistar , Sinaptossomos , Encéfalo , Carbono/farmacologia , Ácido Glutâmico/farmacologia , Ácido Cítrico/farmacologia , Mercúrio/toxicidade , Ureia/farmacologia
8.
Environ Toxicol ; 39(4): 2138-2149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108610

RESUMO

Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-ß (Aß1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aß (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aß1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.


Assuntos
Doença de Alzheimer , Betaína , Ácidos Bóricos , Animais , Ratos , Betaína/farmacologia , Sinaptossomos , 8-Hidroxi-2'-Desoxiguanosina , Glutationa , RNA Mensageiro
9.
Mitochondrion ; 73: 95-107, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37944836

RESUMO

Mitochondrial function at synapses can be assessed in isolated nerve terminals. Synaptosomes are structures obtained in vitro by detaching the nerve endings from neuronal bodies under controlled homogenization conditions. Several protocols have been described for the preparation of intact synaptosomal fractions. Herein a fast and economical method to obtain synaptosomes with optimal intrasynaptic mitochondria functionality was described. Synaptosomal fractions were obtained from mouse brain cortex by differential centrifugation followed by centrifugation in a Ficoll gradient. The characteristics of the subcellular particles obtained were analyzed by flow cytometry employing specific tools. Integrity and specificity of the obtained organelles were evaluated by calcein and SNAP-25 probes. The proportion of positive events of the synaptosomal preparation was 75 ± 2 % and 48 ± 7% for calcein and Synaptosomal-Associated Protein of 25 kDa (SNAP-25), respectively. Mitochondrial integrity was evaluated by flow cytometric analysis of cardiolipin content, which indicated that 73 ± 1% of the total events were 10 N-nonylacridine orange (NAO)-positive. Oxygen consumption, ATP production and mitochondrial membrane potential determinations showed that mitochondria inside synaptosomes remained functional after the isolation procedure. Mitochondrial and synaptosomal enrichment were determined by measuring synaptosomes/ homogenate ratio of specific markers. Functionality of synaptosomes was verified by nitric oxide detection after glutamate addition. As compared with other methods, the present protocol can be performed briefly, does not imply high economic costs, and provides an useful tool for the isolation of a synaptosomal preparation with high mitochondrial respiratory capacity and an adequate integrity and function of intraterminal mitochondria.


Assuntos
Mitocôndrias , Sinaptossomos , Camundongos , Animais , Sinaptossomos/química , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Mitocôndrias/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Córtex Cerebral
10.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
11.
J Neurosci Methods ; 396: 109920, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459899

RESUMO

BACKGROUND: Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD: Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS: Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS: PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS: The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.


Assuntos
Sinapses , Sinaptossomos , Humanos , Citometria de Fluxo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Terminações Pré-Sinápticas , Plasticidade Neuronal
12.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446155

RESUMO

Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.


Assuntos
Ácido Glutâmico , Fótons , Animais , Camundongos , Córtex Cerebral , Ácido Glutâmico/farmacologia , Terminações Nervosas , Neurônios , Sinaptossomos
13.
J Biol Chem ; 299(9): 105091, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516240

RESUMO

α-Synuclein and family members ß- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αßγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.


Assuntos
Clatrina , Proteínas Monoméricas de Montagem de Clatrina , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Endocitose , Microscopia Imunoeletrônica , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Transporte Proteico , Técnicas In Vitro , Fosfatidilinositol 4,5-Difosfato/metabolismo , Encéfalo/citologia , Vesículas Revestidas por Clatrina/metabolismo
15.
Neurotox Res ; 41(6): 514-525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37458923

RESUMO

Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.


Assuntos
Endocanabinoides , Sinaptossomos , Ratos , Animais , Sinaptossomos/metabolismo , Monoacilglicerol Lipases/metabolismo , Receptores de Canabinoides , Agonismo Inverso de Drogas , Encéfalo/metabolismo , Estresse Oxidativo , Benzodioxóis/farmacologia , Receptor CB1 de Canabinoide
16.
J Proteome Res ; 22(7): 2460-2476, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37326657

RESUMO

Label-free quantitation (LFQ) was applied to proteome profiling of rat brain cortical development during the early postnatal period. Male and female rat brain extracts were prepared using a convenient, detergent-free sample preparation technique at postnatal days (PND) 2, 8, 15, and 22. The PND protein ratios were calculated using Proteome Discoverer, and the PND protein change profiles were constructed separately for male and female animals for key presynaptic, postsynaptic, and adhesion brain proteins. The profiles were compared to the analogous profiles assembled from the published mouse and rat cortex proteomic data, including the fractionated-synaptosome data. The PND protein-change trendlines, Pearson correlation coefficient (PCC), and linear regression analysis of the statistically significant PND protein changes were used in the comparative analysis of the datasets. The analysis identified similarities and differences between the datasets. Importantly, there were significant similarities in the comparison of the rat cortex PND (current work) vs mouse (previously published) PND profiles, although in general, a lower abundance of synaptic proteins in mice than in rats was found. The male and female rat cortex PND profiles were expectedly almost identical (98-99% correlation by PCC), which also substantiated this LFQ nanoflow liquid chromatography-high-resolution mass spectrometry approach.


Assuntos
Proteoma , Proteômica , Ratos , Animais , Camundongos , Masculino , Feminino , Proteoma/análise , Encéfalo/metabolismo , Sinaptossomos/química
17.
Eur J Pharmacol ; 950: 175772, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146708

RESUMO

Mangiferin is a glucosyl xanthone that has been shown to be a neuroprotective agent against brain disorders involving excess glutamate. However, the effect of mangiferin on the function of the glutamatergic system has not been investigated. In this study, we used synaptosomes from the rat cerebral cortex to investigate the effect of mangiferin on glutamate release and identify the possible underlying mechanism. We observed that mangiferin produced a concentration-dependent reduction in the release of glutamate elicited by 4-aminopyridine with an IC50 value of 25 µM. Inhibition of glutamate release was blocked by removing extracellular calcium and by treatment with the vacuolar-type H+-ATPase inhibitor bafilomycin A1, which prevents the uptake and storage of glutamate in vesicles. Moreover, we showed that mangiferin decreased the 4-aminopyridine-elicited FM1-43 release and synaptotagmin 1 luminal domain antibody (syt1-L ab) uptake from synaptosomes, which correlated with decreased synaptic vesicle exocytosis. Transmission electron microscopy in synaptosomes also showed that mangiferin attenuated the 4-aminopyridine-elicited decrease in the number of synaptic vesicles. In addition, antagonism of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase A (PKA) counteracted mangiferin's effect on glutamate release. Mangiferin also decreased the phosphorylation of CaMKII, PKA, and synapsin I elicited by 4-aminopyridine treatment. Our data suggest that mangiferin reduces PKA and CaMKII activation and synapsin I phosphorylation, which could decrease synaptic vesicle availability and lead to a subsequent reduction in vesicular glutamate release from synaptosomes.


Assuntos
Ácido Glutâmico , Xantonas , Ratos , Animais , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Sinapsinas/metabolismo , Fosforilação , Sinaptossomos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral , 4-Aminopiridina/farmacologia , Xantonas/farmacologia , Cálcio/metabolismo
18.
Neurochem Int ; 167: 105537, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37164158

RESUMO

The purpose of this study was to evaluate the effect of cynarin, a caffeoylquinic acid derivative in artichoke, on glutamate release elicited by 4-aminopyridine (4-AP) in rat cortical nerve terminals (synaptosomes). We observed that cynarin decreased 4-aminopyridine-elicited glutamate release, which was prevented by the removal of external free Ca2+ with ethylene glycol bis (ß-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) or the blockade of P/Q-type calcium channels with ω-agatoxin IVA. Molecular docking also revealed that cynarin formed a hydrogen bond with the P/Q-type Ca2+ channel, indicating a mechanism of action involving Ca2+ influx inhibition. Additionally, the inhibitory effect of cynarin on glutamate release is associated with a change in the available synaptic vesicles, as cynarin decreased 4-AP-elicited FM1-43 release or hypertonic sucrose-evoked glutamate release from synaptosomes. Furthermore, the suppression of protein kinase A (PKA) prevented the effect of cynarin on 4-AP-elicited glutamate release. 4-AP-elicited PKA and synapsin I or synaptosomal-associated protein of 25 kDa (SNAP-25) phosphorylation at PKA-specific residues were also attenuated by cynarin. Our data indicate that cynarin, through the suppression of P/Q-type Ca2+ channels, inhibits PKA activation and attenuates synapsin I and SNAP-25 phosphorylation at PKA-specific residues, thus decreasing synaptic vesicle availability and contributing to glutamate release inhibition in cerebral cortex terminals.


Assuntos
Cynara scolymus , Ácido Glutâmico , Ratos , Animais , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Cynara scolymus/metabolismo , Sinaptossomos/metabolismo , Sinapsinas/metabolismo , Sinapsinas/farmacologia , Simulação de Acoplamento Molecular , Potenciais da Membrana , 4-Aminopiridina/farmacologia , Canais de Cálcio Tipo P/metabolismo , Córtex Cerebral/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Terminações Pré-Sinápticas/metabolismo
19.
Methods Mol Biol ; 2654: 201-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106184

RESUMO

In addition to microvilli's role as structural scaffold for TCR clustering, we recently discovered a novel function as message senders. We found that microvilli are separated from the T cell body shortly upon TCR stimulation and vesiculated to form T cell microvilli particles (TMPs), a new type of membrane vesicles. TMPs and synaptic ectosomes, which bud from the synaptic cleft, constitute "T cell immunological synaptosomes (TISs)" and act as conveyors of T cell messages or traits to cognate antigen-presenting cells. In practice, it is almost impossible to distinguish between TMPs and synaptic ectosomes. Here, we describe a newly developed protocol to isolate TISs from activated T cells using antibody-immobilized agarose beads and density gradient ultracentrifugation. We further describe the methods for TIS quantification with flow cytometry and to evaluate TIS efficacy on dendritic cells.


Assuntos
Micropartículas Derivadas de Células , Linfócitos T , Sinaptossomos/metabolismo , Células Apresentadoras de Antígenos , Micropartículas Derivadas de Células/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
20.
Psychol Sci ; 34(5): 616-632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040450

RESUMO

Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.


Assuntos
Derrota Social , Sinaptossomos , Animais , Camundongos , Hipocampo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...