Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(4): 953-961, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38566504

RESUMO

Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 µM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.


Assuntos
Cálcio , Fosfolipídeos , Sinaptotagmina I , Cálcio/metabolismo , Exocitose/fisiologia , Neurotransmissores/metabolismo , Fosfolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animais , Ratos
2.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647453

RESUMO

Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.


Assuntos
Cálcio , Vesículas Extracelulares , Sinaptotagmina I , Animais , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Comunicação Celular , Organelas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Tetraspaninas/metabolismo , Tetraspaninas/genética , Vesículas Extracelulares/metabolismo , Camundongos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo
3.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536730

RESUMO

Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.


Assuntos
Sinapses , Vesículas Sinápticas , Sinaptotagminas , Animais , Camundongos , Potenciais de Ação , Cálcio/metabolismo , Exocitose , Neurotransmissores , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
Nat Commun ; 15(1): 262, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177243

RESUMO

Synaptotagmin (syt) 1, a Ca2+ sensor for synaptic vesicle exocytosis, functions in vivo as a multimer. Syt1 senses Ca2+ via tandem C2-domains that are connected to a single transmembrane domain via a juxtamembrane linker. Here, we show that this linker segment harbors a lysine-rich, intrinsically disordered region that is necessary and sufficient to mediate liquid-liquid phase separation (LLPS). Interestingly, condensate formation negatively regulates the Ca2+-sensitivity of syt1. Moreover, Ca2+ and anionic phospholipids facilitate the observed phase separation, and increases in [Ca2+]i promote the fusion of syt1 droplets in living cells. Together, these observations suggest a condensate-mediated feedback loop that serves to fine-tune the ability of syt1 to trigger release, via alterations in Ca2+ binding activity and potentially through the impact of LLPS on membrane curvature during fusion reactions. In summary, the juxtamembrane linker of syt1 emerges as a regulator of syt1 function by driving self-association via LLPS.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Vesículas Sinápticas/metabolismo , Separação de Fases , Membrana Celular/metabolismo , Transmissão Sináptica , Cálcio/metabolismo
5.
Protein Sci ; 33(1): e4850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038838

RESUMO

Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.


Assuntos
Proteínas de Ligação ao Cálcio , Glicoproteínas de Membrana , Animais , Humanos , Filogenia , Proteínas de Ligação ao Cálcio/metabolismo , Eletricidade Estática , Glicoproteínas de Membrana/química , Sinaptotagmina I/metabolismo , Sequência de Aminoácidos , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína , Cálcio/metabolismo
6.
Mol Biol Cell ; 35(3): ar12, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117594

RESUMO

Insulin secretion depends on the Ca2+-regulated fusion of granules with the plasma membrane. A recent model of Ca2+-triggered exocytosis in secretory cells proposes that lipids in the plasma membrane couple the calcium sensor Syt1 to the membrane fusion machinery (Kiessling et al., 2018). Specifically, Ca2+-mediated binding of Syt1's C2 domains to the cell membrane shifts the membrane-anchored SNARE syntaxin-1a to a more fusogenic conformation, straightening its juxtamembrane linker. To test this model in live cells and extend it to insulin secretion, we enriched INS1 cells with a panel of lipids with different acyl chain compositions. Fluorescence lifetime measurements demonstrate that cells with more disordered membranes show an increase in fusion efficiency, and vice versa. Experiments with granules purified from INS1 cells and recombinant SNARE proteins reconstituted in supported membranes confirmed that lipid acyl chain composition determines SNARE conformation and that lipid disordering correlates with increased fusion. Addition of Syt1's C2AB domains significantly decreased lipid order in target membranes and increased SNARE-mediated fusion probability. Strikingly, Syt's action on both fusion and lipid order could be partially bypassed by artificially increasing unsaturated phosphatidylserines in the target membrane. Thus, plasma membrane lipids actively participate in coupling Ca2+/synaptotagmin-sensing to the SNARE fusion machinery in cells.


Assuntos
Células Secretoras de Insulina , Fusão de Membrana , Lipídeos de Membrana/metabolismo , Proteínas SNARE/metabolismo , Células Secretoras de Insulina/metabolismo , Membrana Celular/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Exocitose , Proteínas Recombinantes/metabolismo , Cálcio/metabolismo
7.
Nat Commun ; 14(1): 7761, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012142

RESUMO

Synaptotagmin-1 and synaptotagmin-7 are two prominent calcium sensors that regulate exocytosis in neuronal and neuroendocrine cells. Upon binding calcium, both proteins partially penetrate lipid bilayers that bear anionic phospholipids, but the specific underlying mechanisms that enable them to trigger exocytosis remain controversial. Here, we examine the biophysical properties of these two synaptotagmin isoforms and compare their interactions with phospholipid membranes. We discover that synaptotagmin-1-membrane interactions are greatly influenced by membrane order; tight packing of phosphatidylserine inhibits binding due to impaired membrane penetration. In contrast, synaptotagmin-7 exhibits robust membrane binding and penetration activity regardless of phospholipid acyl chain structure. Thus, synaptotagmin-7 is a super-penetrator. We exploit these observations to specifically isolate and examine the role of membrane penetration in synaptotagmin function. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that membrane penetration is a critical component that underlies how synaptotagmin proteins regulate reconstituted, exocytic fusion pores in response to calcium.


Assuntos
Cálcio , Sinaptotagmina I , Sinaptotagminas/metabolismo , Cálcio/metabolismo , Sinaptotagmina I/metabolismo , Exocitose/fisiologia , Membrana Celular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fosfolipídeos/metabolismo
8.
Int J Biol Macromol ; 253(Pt 4): 127096, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769766

RESUMO

MicroRNAs (miRNAs) are important post-transcriptional factors involved in the regulation of gene expression and play crucial roles in biological processes related to milk fat metabolism. Our previous study revealed that miR-19a expression was significantly higher in the mammary epithelial cells of high-milk fat cows than in those of low-milk fat cows. However, the precise molecular mechanisms underlying these differences remain unclear. In this study, we found a high expression of miR-19a in the mammary tissues of dairy cows. The regulatory effects of miR-19a on bovine mammary epithelial cells (BMECs) were analyzed using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, which demonstrated that miR-19a significantly inhibited BMEC proliferation. Transfection of the miR-19a mimic into BMECs significantly upregulated the expression of milk fat marker genes LPL, SCAP, and SREBP1, promoting triglyceride (TG) synthesis and lipid droplet formation, whereas the miR-19a inhibitor exhibited the opposite function. TargetScan and miRWalk predictions revealed that synaptotagmin 1 (SYT1) is a target gene of miR-19a. A dual luciferase reporter gene assay, RT-qPCR, and western blot analyses revealed that miR-19a directly targets the 3'-untranslated region (UTR) of SYT1 and negatively regulates SYT1 expression. Functional validation revealed that overexpression of SYT1 in BMECs significantly downregulated the expression of LPL, SCAP, and SREBP1, and inhibited TG synthesis and lipid droplet formation. Conversely, the knockdown of SYT1 had the opposite effect. Altogether, miR-19a plays a crucial role in regulating the proliferation and differentiation of BMECs and regulates biological processes related to TG synthesis and lipid droplet formation by suppressing SYT1 expression. These findings provide a strong foundation for further research on the functional mechanisms underlying milk fat metabolism in dairy cows.


Assuntos
MicroRNAs , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Triglicerídeos/metabolismo , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Regiões 3' não Traduzidas/genética
9.
Neuron ; 111(23): 3765-3774.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738980

RESUMO

Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Animais , Camundongos , Endocitose/fisiologia , Exocitose/fisiologia , Lipídeos , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
10.
Cell Rep ; 42(7): 112726, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37393619

RESUMO

Caspase-11 (Casp-11) is known to induce pyroptosis and defends against cytosol-invading bacterial pathogens, but its regulation remains poorly defined. Here, we identified extended synaptotagmin 1 (E-Syt1), an endoplasmic reticulum protein, as a key regulator of Casp-11 oligomerization and activation. Macrophages lacking E-Syt1 exhibited reduced production of interleukin-1ß (IL-1ß) and impaired pyroptosis upon cytosolic lipopolysaccharide (LPS) delivery and cytosol-invasive bacterial infection. Moreover, cleavage of Casp-11 and its downstream substrate gasdermin D were significantly diminished in ESyt1-/- macrophages. Upon LPS stimulation, E-Syt1 underwent oligomerization and bound to the p30 domain of Casp-11 via its synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. E-Syt1 oligomerization and its interaction with Casp-11 facilitated Casp-11 oligomerization and activation. Notably, ESyt1-/- mice were susceptible to infection by cytosol-invading bacteria Burkholderia thailandensis while being resistant to LPS-induced endotoxemia. These findings collectively suggest that E-Syt1 may serve as a platform for Casp-11 oligomerization and activation upon cytosolic LPS sensing.


Assuntos
Caspases , Lipopolissacarídeos , Animais , Camundongos , Caspase 1/metabolismo , Caspases/metabolismo , Citosol/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Sinaptotagmina I/metabolismo
11.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241771

RESUMO

Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sinaptotagmina I/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular , Carcinogênese
12.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821088

RESUMO

The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Fosfolipídeos , Sinaptotagmina I , eIF-2 Quinase , Humanos , Transporte Biológico , eIF-2 Quinase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagmina I/metabolismo , Membranas Mitocondriais/metabolismo
13.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821089

RESUMO

Despite decades of extensive research, mitochondrial lipid transport is a process far from fully understood. In this issue, Sassano et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202206008) identified a new complex, composed of E-Syt1 and PERK, which mediates lipid transport at ER-mitochondria contact sites and regulates mitochondrial functions in human cells.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Membranas Mitocondriais , Humanos , Transporte Biológico , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Sinaptotagmina I/metabolismo , eIF-2 Quinase , Retículo Endoplasmático/metabolismo , Biogênese de Organelas
14.
J Neurosci ; 43(9): 1475-1491, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732068

RESUMO

Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.


Assuntos
Substância P , Vesículas Sinápticas , Animais , Camundongos , Sinaptotagminas/metabolismo , Substância P/metabolismo , Vesículas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Exocitose , Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Cálcio/metabolismo
15.
Sci Rep ; 12(1): 22407, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575295

RESUMO

Synaptotagmin-1 is a vesicular protein and Ca2+ sensor for Ca2+-dependent exocytosis. Ca2+ induces synaptotagmin-1 binding to its own vesicle membrane, called the cis-interaction, thus preventing the trans-interaction of synaptotagmin-1 to the plasma membrane. However, the electrostatic regulation of the cis- and trans-membrane interaction of synaptotagmin-1 was poorly understood in different Ca2+-buffering conditions. Here we provide an assay to monitor the cis- and trans-membrane interactions of synaptotagmin-1 by using native purified vesicles and the plasma membrane-mimicking liposomes (PM-liposomes). Both ATP and EGTA similarly reverse the cis-membrane interaction of synaptotagmin-1 in free [Ca2+] of 10-100 µM. High PIP2 concentrations in the PM-liposomes reduce the Hill coefficient of vesicle fusion and synaptotagmin-1 membrane binding; this observation suggests that local PIP2 concentrations control the Ca2+-cooperativity of synaptotagmin-1. Our data provide evidence that Ca2+ chelators, including EGTA and polyphosphate anions such as ATP, ADP, and AMP, electrostatically reverse the cis-interaction of synaptotagmin-1.


Assuntos
Lipossomos , Sinaptotagmina I , Lipossomos/metabolismo , Eletricidade Estática , Ácido Egtázico/metabolismo , Sinaptotagmina I/metabolismo , Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Exocitose/fisiologia , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Sinaptotagminas/metabolismo , Proteínas SNARE/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044553

RESUMO

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Assuntos
Neoplasias Hepáticas , Proteínas R-SNARE , Sinaptotagmina I , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , Proteínas R-SNARE/metabolismo , Sinaptotagmina I/metabolismo , Microambiente Tumoral
17.
Int J Biol Macromol ; 216: 906-915, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914553

RESUMO

Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin mined from the egg transcriptome of spider L. tredecimguttatus, was previously found to promote the release of dopamine from PC12 cells. However, the relevant molecular mechanism has not been fully clear. Here LETX-VI was demonstrated to rapidly penetrate the plasma membrane of PC12 cells via the vesicle exocytosis/endocytosis cycle, during which vesicular transmembrane protein synaptotagmin 1 (Syt1) functions as a receptor, with its vesicle luminal domain interacting with the C-terminal region of LETX-VI. The C-terminal sequence of LETX-VI is the functional region for both entering cells and promoting dopamine release. After gaining entry into the PC12 cells, LETX-VI down-regulated the phosphorylation levels of Syt1 at T201 and T195, thereby facilitating vesicle fusion with plasma membrane and thus promoting dopamine release. The relevant mechanism analysis indicated that LETX-VI has a protein phosphatase 2A (PP2A) activator activity. The present work has not only probed into the Syt1-mediated action mechanism of LETX-VI, but also revealed the structure-function relationship of the toxin, thus suggesting its potential applications in the drug transmembrane delivery and treatment of the diseases related to dopamine release and PP2A activity deficiency.


Assuntos
Dopamina , Sinaptotagmina I , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Endocitose , Fusão de Membrana , Ratos , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagminas
18.
Elife ; 112022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929728

RESUMO

Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin's Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin's PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin's allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission.


For our brains and nervous systems to work properly, the nerve cells within them must be able to 'talk' to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein's affinity for PIP2. However, how these three molecules ­ synaptotagmin, PIP2, and calcium ­ work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of 'virtual vesicles' using available experimental data on synaptotagmin's affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each 'complex' of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell ­ to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , Cálcio/metabolismo , Cálcio da Dieta , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Fosfatidilinositóis/metabolismo , Fosfolipídeos , Sinaptotagmina I/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
19.
J Neurosci ; 42(30): 5816-5829, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35701163

RESUMO

Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.


Assuntos
Domínios C2 , Cálcio , Neurotransmissores , Sinaptotagmina I , Animais , Cálcio/metabolismo , Lipídeos , Camundongos , Neurotransmissores/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
20.
Elife ; 112022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708237

RESUMO

Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca2+ influx.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cálcio/metabolismo , Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...