Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 37(17): 4604-4617, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28363983

RESUMO

Parvalbumin-expressing inhibitory neurons in the mammalian CNS are specialized for fast transmitter release at their output synapses. However, the Ca2+ sensor(s) used by identified inhibitory synapses, including the output synapses of parvalbumin-expressing inhibitory neurons, have only recently started to be addressed. Here, we investigated the roles of Syt1 and Syt2 at two types of fast-releasing inhibitory connections in the mammalian CNS: the medial nucleus of the trapezoid body to lateral superior olive glycinergic synapse, and the basket/stellate cell-Purkinje GABAergic synapse in the cerebellum. We used conditional and conventional knock-out (KO) mouse lines, with viral expression of Cre-recombinase and a light-activated ion channel for optical stimulation of the transduced fibers, to produce Syt1-Syt2 double KO synapses in vivo Surprisingly, we found that KO of Syt2 alone had only minor effects on evoked transmitter release, despite the clear presence of the protein in inhibitory nerve terminals revealed by immunohistochemistry. We show that Syt1 is weakly coexpressed at these inhibitory synapses and must be genetically inactivated together with Syt2 to achieve a significant reduction and desynchronization of fast release. Thus, our work identifies the functionally relevant Ca2+ sensor(s) at fast-releasing inhibitory synapses and shows that two major Syt isoforms can cooperate to mediate release at a given synaptic connection.SIGNIFICANCE STATEMENT During synaptic transmission, the influx of Ca2+ into the presynaptic nerve terminal activates a Ca2+ sensor for vesicle fusion, a crucial step in the activity-dependent release of neurotransmitter. Synaptotagmin (Syt) proteins, and especially Syt1 and Syt2, have been identified as the Ca2+ sensor at excitatory synapses, but the Ca2+ sensor(s) at inhibitory synapses in native brain tissue are not well known. We found that both Syt1 and Syt2 need to be genetically inactivated to cause a significant reduction of activity-evoked release at two types of fast inhibitory synapses in mouse brain. Thus, we identify Syt2 as a functionally important Ca2+ sensor at fast-releasing inhibitory synapses, and show that Syt1 and Syt2 can redundantly control transmitter release at specific brain synapses.


Assuntos
Neurônios/fisiologia , Parvalbuminas/metabolismo , Transmissão Sináptica/fisiologia , Sinaptotagmina II/fisiologia , Sinaptotagmina I/fisiologia , Animais , Cerebelo/metabolismo , Glicina/metabolismo , Camundongos , Camundongos Knockout , Fibras Nervosas/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Estimulação Luminosa , Ácido gama-Aminobutírico/fisiologia
2.
Mol Neurodegener ; 10: 31, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26202512

RESUMO

BACKGROUND: Accumulation of the ß-amyloid peptide (Aß) is a major pathological hallmark of Alzheimer's disease (AD). Recent studies have shown that synaptic Aß toxicity may directly impair synaptic function. However, proteins regulating Aß generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aß generation. RESULTS: Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, -2 and -9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aß levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50% reduction in secreted Aß generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aß40 and Aß42 generation. As secreted sAPPß levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aß generation by modulating BACE1-mediated cleavage of APP. CONCLUSION: Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aß generation and thus may play an important role in the pathogenesis of AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Sinaptotagminas/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Ácido Aspártico Endopeptidases/fisiologia , Células CHO , Cricetinae , Cricetulus , Camundongos , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Sinaptotagmina I/deficiência , Sinaptotagmina I/genética , Sinaptotagmina I/fisiologia , Sinaptotagmina II/fisiologia
3.
Open Biol ; 3(11): 130163, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24350389

RESUMO

Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a 'critical period' of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the α9-nicotinic acetylcholine receptor subunit (α9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca(2+)-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Neurônios Motores/fisiologia , Receptores Nicotínicos/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação , Animais , Cóclea/fisiologia , Camundongos , Camundongos Knockout , Receptores Nicotínicos/genética , Estereocílios , Sinaptotagmina II/genética , Sinaptotagmina II/fisiologia
4.
Biochim Biophys Acta ; 1808(10): 2435-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21787744

RESUMO

Mast cells play a pivotal role in allergic responses. Antigen stimulation causes elevation of the intracellular Ca(2+) concentration, which triggers the exocytotic release of inflammatory mediators such as histamine. Recent research, including our own, has revealed that SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins such as syntaxin-3, -4, SNAP-23, and VAMP-8 are involved in exocytosis. Although exocytosis in mast cells is Ca(2+) dependent, the target molecule that interacts with Ca(2+) is not clear. Synaptotagmin is a Ca(2+) sensor and regulates exocytosis in neuronal cells. However, the role of synaptotagmin 2, a member of the synaptotagmin family, in exocytosis in mast cells remains controversial. In this study, we investigated the role of synaptotagmin 2 by a liposome-based fusion assay. SNARE proteins (SNAP-23, syntaxin-3, VAMP-8) and synaptotagmin 2 were expressed in Escherichia coli and purified as GST-tagged or His-tagged fusion proteins. These SNARE proteins were incorporated by a detergent dialysis method. Membrane fusion between liposomes was monitored by fluorescence resonance energy transfer between fluorescent-labeled phospholipids. In the presence of Ca(2+), low synaptotagmin 2 concentration inhibited membrane fusion between SNARE-containing liposomes, while high synaptotagmin 2 concentration enhanced membrane fusion. This enhancement required phosphatidylserine as a membrane component. These results suggest that synaptotagmin 2 regulates membrane fusion of SNARE-containing liposomes involved in exocytosis in mast cells, and that this regulation is dependent on synaptotagmin 2 concentration, Ca(2+), and phosphatidylserine.


Assuntos
Exocitose/fisiologia , Lipossomos , Mastócitos/metabolismo , Fusão de Membrana/fisiologia , Sinaptotagmina II/fisiologia , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida
5.
J Neurosci ; 30(40): 13281-90, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926654

RESUMO

In pre-hearing mice, vesicle exocytosis at cochlear inner hair cell (IHC) ribbon synapses is triggered by spontaneous Ca(2+) spikes. At the onset of hearing, IHC exocytosis is then exclusively driven by graded potentials, and is characterized by higher Ca(2+) efficiency and improved synchronization of vesicular release. The molecular players involved in this transition are still unknown. Here we addressed the involvement of synaptotagmins and otoferlin as putative Ca(2+) sensors in IHC exocytosis during postnatal maturation of the cochlea. Using cell capacitance measurements, we showed that Ca(2+)-evoked exocytosis in mouse IHCs switches from an otoferlin-independent to an otoferlin-dependent mechanism at postnatal day 4. During this early exocytotic period, several synaptotagmins (Syts), including Syt1, Syt2 and Syt7, were detected in IHCs. The exocytotic response as well as the release of the readily releasable vesicle pool (RRP) was, however, unchanged in newborn mutant mice lacking Syt1, Syt2 or Syt7 (Syt1(-/-), Syt2(-/-) and Syt7(-/-) mice). We only found a defect in RRP recovery in Syt1(-/-) mice which was apparent as a strongly reduced response to repetitive stimulations. In post-hearing Syt2(-/-) and Syt7(-/-) mutant mice, IHC synaptic exocytosis was unaffected. The transient expression of Syt1 and Syt2, which were no longer detected in IHCs after the onset of hearing, indicates that these two most common Ca(2+)-sensors in CNS synapses are not involved in mature IHCs. We suggest that otoferlin underlies highly efficient Ca(2+)-dependent membrane-membrane fusion, a process likely essential to increase the probability and synchrony of vesicle fusion events at the mature IHC ribbon synapse.


Assuntos
Cóclea/crescimento & desenvolvimento , Exocitose , Células Ciliadas Auditivas Internas/fisiologia , Proteínas de Membrana/fisiologia , Sinaptotagmina II/fisiologia , Sinaptotagmina I/fisiologia , Animais , Cálcio/fisiologia , Sinalização do Cálcio/genética , Senescência Celular/genética , Senescência Celular/fisiologia , Cóclea/citologia , Capacitância Elétrica , Exocitose/genética , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Sinapses/genética , Sinapses/fisiologia , Transmissão Sináptica/genética , Sinaptotagmina I/genética , Sinaptotagmina II/genética
6.
Dev Cell ; 19(3): 426-39, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20833364

RESUMO

Targeting of activated plasma membrane receptors to endocytic pathways is important in determining the outcome of growth factor signaling. However, the molecular mechanisms are still poorly understood. Here, we show that the synaptotagmin-related membrane protein E-Syt2 is essential for rapid endocytosis of the activated FGF receptor and for functional signal transduction during Xenopus development. E-Syt2 depletion prevents an early phase of activated FGF receptor endocytosis that we show is required for ERK activation and the induction of the mesoderm. E-Syt2 interacts selectively with the activated FGF receptor and with Adaptin-2, and is required upstream of Ras activation and of receptor autophosphorylation for ERK activation and the induction of the mesodermal marker Xbra. The data identify E-Syt2 as an endocytic adaptor for the clathrin-mediated pathway whose function is conserved in human and suggest a broader role for the E-Syt subfamily in growth factor signaling.


Assuntos
Endocitose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Sinaptotagmina II/fisiologia , Xenopus laevis/embriologia , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Western Blotting , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Imunofluorescência , Humanos , Imunoprecipitação , Hibridização In Situ , Mesoderma/citologia , Mesoderma/metabolismo , RNA Mensageiro/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Neuron ; 63(4): 482-96, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19709630

RESUMO

A multitude of synaptic proteins interact at the active zones of nerve terminals to achieve the high temporal precision of neurotransmitter release in synchrony with action potentials. Though synaptotagmin has been recognized as the Ca2+ sensor for synchronous release, it may have additional roles of action. We address this question at the calyx of Held, a giant presynaptic terminal, that allows biophysical dissection of multiple roles of molecules in synaptic transmission. Using high-level expression recombinant adenoviruses, in conjunction with a stereotactic surgery in postnatal day 1 rats, we overcame the previous inability to molecular perturb the calyx by overexpression of a mutated synaptotagmin. We report that this mutation leaves intrinsic Ca2+ sensitivity of vesicles intact while it destabilizes the readily releasable pool of vesicles and loosens the tight coupling between Ca2+ influx and release, most likely by interfering with the correct positioning of vesicles with respect to Ca2+ channels.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina II/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Cálcio/fisiologia , Sinalização do Cálcio/genética , Células Cultivadas , Dados de Sequência Molecular , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Vesículas Sinápticas/genética , Sinaptotagmina II/genética , Fatores de Tempo
8.
J Biol Chem ; 284(15): 9781-7, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19208631

RESUMO

Synaptotagmin 2 (Syt2) functions as a low affinity, fast exocytic Ca(2+) sensor in neurons, where it is activated by Ca(2+) influx through voltage-gated channels. Targeted insertion of lacZ into the mouse syt2 locus reveals expression in mucin-secreting goblet cells of the airways. In these cells, rapid Ca(2+) entry from the extracellular medium does not contribute significantly to stimulated secretion (Davis, C. W., and Dickey, B. F. (2008) Annu. Rev. Physiol. 70, 487-512). Nonetheless, Syt2(-/-) mice show a severe defect in acute agonist-stimulated airway mucin secretion, and Syt2(+/-) mice show a partial defect. In contrast to Munc13-2(-/-) mice (Zhu, Y., Ehre, C., Abdullah, L. H., Sheehan, J. K., Roy, M., Evans, C. M., Dickey, B. F., and Davis, C. W. (2008) J. Physiol. (Lond.) 586, 1977-1992), Syt2(-/-) mice show no spontaneous mucin accumulation, consistent with the inhibitory action of Syt2 at resting cytoplasmic Ca(2+) in neurons. In human airway goblet cells, inositol trisphosphate receptors are found in rough endoplasmic reticulum that closely invests apical mucin granules, consistent with the known dependence of exocytic Ca(2+) signaling on intracellular stores in these cells. Hence, Syt2 can serve as an exocytic sensor for diverse Ca(2+) signaling systems, and its levels are limiting for stimulated secretory function in airway goblet cells.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Exocitose , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Sinaptotagmina II/fisiologia , Animais , Cálcio/metabolismo , Citoplasma/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucinas/metabolismo , Neurônios/metabolismo , Sinaptotagmina II/metabolismo
9.
J Neurosci ; 26(52): 13493-504, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17192432

RESUMO

Biochemical and genetic data suggest that synaptotagmin-2 functions as a Ca2+ sensor for fast neurotransmitter release in caudal brain regions, but animals and/or synapses lacking synaptotagmin-2 have not been examined. We have now generated mice in which the 5' end of the synaptotagmin-2 gene was replaced by lacZ. Using beta-galactosidase as a marker, we show that, consistent with previous studies, synaptotagmin-2 is widely expressed in spinal cord, brainstem, and cerebellum, but is additionally present in selected forebrain neurons, including most striatal neurons and some hypothalamic, cortical, and hippocampal neurons. Synaptotagmin-2-deficient mice were indistinguishable from wild-type littermates at birth, but subsequently developed severe motor dysfunction, and perished at approximately 3 weeks of age. Electrophysiological studies in cultured striatal neurons revealed that the synaptotagmin-2 deletion slowed the kinetics of evoked neurotransmitter release without altering the total amount of release. In contrast, synaptotagmin-2-deficient neuromuscular junctions (NMJs) suffered from a large reduction in evoked release and changes in short-term synaptic plasticity. Furthermore, in mutant NMJs, the frequency of spontaneous miniature release events was increased both at rest and during stimulus trains. Viewed together, our results demonstrate that the synaptotagmin-2 deficiency causes a lethal impairment in synaptic transmission in selected synapses. This impairment, however, is less severe than that produced in forebrain neurons by deletion of synaptotagmin-1, presumably because at least in NMJs, synaptotagmin-1 is coexpressed with synaptotagmin-2, and both together mediate fast Ca2+-triggered release. Thus, synaptotagmin-2 is an essential synaptotagmin isoform that functions in concert with other synaptotagmins in the Ca2+ triggering of neurotransmitter release.


Assuntos
Encéfalo/metabolismo , Cálcio/fisiologia , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo , Sinaptotagmina II/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Junção Neuromuscular/genética , Neurotransmissores/genética , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Sinapses/genética , Transmissão Sináptica/genética , Sinaptotagmina II/deficiência , Sinaptotagmina II/genética
10.
J Neurosci ; 26(2): 632-43, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16407561

RESUMO

Synaptotagmins comprise a large protein family, of which synaptotagmin 1 (Syt1) is a Ca2+ sensor for fast exocytosis, and its close relative, synaptotagmin 2 (Syt2), is assumed to serve similar functions. Chromaffin cells express Syt1 but not Syt2. We compared secretion from chromaffin cells from Syt1 null mice overexpressing either Syt isoform. High time-resolution capacitance measurement showed that Syt1 null cells lack the exocytotic phase corresponding to the readily-releasable pool (RRP) of vesicles. Comparison with the amperometric signal confirmed that the missing phase of exocytosis consists of catecholamine-containing vesicles. Overexpression of Syt1 rescued the RRP and increased its size above wild-type values, whereas the size of the slowly releasable pool decreased, indicating that the availability of Syt1 regulates the relative size of the two releasable pools. The RRP was also rescued by Syt2 overexpression, but the kinetics of fusion was slightly slower than in cells expressing Syt1. Biochemical experiments showed that Syt2 has a slightly lower Ca2+ affinity for phospholipid binding than Syt1 because of a difference in the C2A domain. These data constitute evidence for the function of Syt1 and Syt2 as alternative, but not identical, calcium-sensors for RRP fusion. By overexpression of Syt1 mutated in the shared PKC/calcium/calmodulin-dependent kinase phosphorylation site, we show that phorbol esters act independently and upstream of Syt1 to regulate the size of the releasable pools. We conclude that exocytosis from mouse chromaffin cells can be modified by the differential expression of Syt isoforms and by Syt abundance but not by phosphorylation of Syt1.


Assuntos
Células Cromafins/fisiologia , Exocitose/fisiologia , Processamento de Proteína Pós-Traducional , Sinaptotagmina II/fisiologia , Sinaptotagmina I/fisiologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cultivadas/fisiologia , Lipossomos/metabolismo , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Fosfolipídeos/metabolismo , Fosforilação , Fotólise , Ligação Proteica , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/fisiologia , Proteínas SNARE/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/deficiência , Sinaptotagmina I/genética , Sinaptotagmina II/química , Sinaptotagmina II/deficiência , Sinaptotagmina II/genética , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...