Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069441

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sindecanas/metabolismo , Internalização do Vírus , Amilorida/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , COVID-19/virologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Humanos , Peptídeos/farmacologia , Domínios Proteicos , SARS-CoV-2/metabolismo , Sindecana-4/antagonistas & inibidores , Sindecana-4/metabolismo , Sindecanas/antagonistas & inibidores
2.
Cancer Treat Res Commun ; 27: 100312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485180

RESUMO

While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/terapia , Sindecanas/metabolismo , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoterapia Adotiva/métodos , Maitansina/análogos & derivados , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Neoplasias/diagnóstico , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Intervalo Livre de Progressão , Receptores de Antígenos Quiméricos , Taxa de Sobrevida , Sindecanas/antagonistas & inibidores , Sindecanas/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 37(13): e93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19483100

RESUMO

Targeted gene silencing by RNA interference allows the study of gene function in plants and animals. In cell culture and small animal models, genetic screens can be performed--even tissue-specifically in Drosophila--with genome-wide RNAi libraries. However, a major problem with the use of RNAi approaches is the unavoidable false-positive error caused by off-target effects. Until now, this is minimized by computational RNAi design, comparing RNAi to the mutant phenotype if known, and rescue with a presumed ortholog. The ultimate proof of specificity would be to restore expression of the same gene product in vivo. Here, we present a simple and efficient method to rescue the RNAi-mediated knockdown of two independent genes in Drosophila. By exploiting the degenerate genetic code, we generated Drosophila RNAi Escape Strategy Construct (RESC) rescue proteins containing frequent silent mismatches in the complete RNAi target sequence. RESC products were no longer efficiently silenced by RNAi in cell culture and in vivo. As a proof of principle, we rescue the RNAi-induced loss of function phenotype of the eye color gene white and tracheal defects caused by the knockdown of the heparan sulfate proteoglycan syndecan. Our data suggest that RESC is widely applicable to rescue and validate ubiquitous or tissue-specific RNAi and to perform protein structure-function analysis.


Assuntos
Drosophila/genética , Técnicas de Silenciamento de Genes , Interferência de RNA , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Drosophila/anatomia & histologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Olho/anatomia & histologia , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Genes de Insetos , Fenótipo , Sindecanas/antagonistas & inibidores , Sindecanas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...