Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.362
Filtrar
1.
Nat Commun ; 15(1): 3834, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714741

RESUMO

Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.


Assuntos
Apoptose , Cobre , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Privação do Sono , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Cobre/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos , Privação do Sono/fisiopatologia , Privação do Sono/metabolismo , Privação do Sono/complicações , ATPases Transportadoras de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Sistema Nervoso Simpático/metabolismo , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 174: 116549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593701

RESUMO

This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1ß levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1ß levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.


Assuntos
Regulação para Baixo , Galactose , Metilaminas , Microglia , Receptores Purinérgicos P2Y12 , Animais , Ratos , Envelhecimento/metabolismo , Regulação para Baixo/efeitos dos fármacos , Galactose/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Metilaminas/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
3.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639409

RESUMO

Blood vessels serve as intermediate conduits for the extension of sympathetic axons towards target tissues, while also acting as crucial targets for their homeostatic processes encompassing the regulation of temperature, blood pressure, and oxygen availability. How sympathetic axons innervate not only blood vessels but also a wide array of target tissues is not clear. Here we show that in embryonic skin, after the establishment of co-branching between sensory nerves and blood vessels, sympathetic axons invade the skin alongside these sensory nerves and extend their branches towards these blood vessels covered by vascular smooth muscle cells (VSMCs). Our mosaic labeling technique for sympathetic axons shows that collateral branching predominantly mediates the innervation of VSMC-covered blood vessels by sympathetic axons. The expression of nerve growth factor (NGF), previously known to induce collateral axon branching in culture, can be detected in the vascular smooth muscle cell (VSMC)-covered blood vessels, as well as sensory nerves. Indeed, VSMC-specific Ngf knockout leads to a significant decrease of collateral branching of sympathetic axons innervating VSMC-covered blood vessels. These data suggest that VSMC-derived NGF serves as an inductive signal for collateral branching of sympathetic axons innervating blood vessels in the embryonic skin.


Assuntos
Músculo Liso Vascular , Fator de Crescimento Neural , Pele , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Fator de Crescimento Neural/metabolismo , Camundongos , Pele/inervação , Pele/irrigação sanguínea , Pele/metabolismo , Miócitos de Músculo Liso/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/inervação , Vasos Sanguíneos/metabolismo , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/metabolismo , Camundongos Knockout
4.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488657

RESUMO

The pelvic organs (bladder, rectum, and sex organs) have been represented for a century as receiving autonomic innervation from two pathways - lumbar sympathetic and sacral parasympathetic - by way of a shared relay, the pelvic ganglion, conceived as an assemblage of sympathetic and parasympathetic neurons. Using single-cell RNA sequencing, we find that the mouse pelvic ganglion is made of four classes of neurons, distinct from both sympathetic and parasympathetic ones, albeit with a kinship to the former, but not the latter, through a complex genetic signature. We also show that spinal lumbar preganglionic neurons synapse in the pelvic ganglion onto equal numbers of noradrenergic and cholinergic cells, both of which therefore serve as sympathetic relays. Thus, the pelvic viscera receive no innervation from parasympathetic or typical sympathetic neurons, but instead from a divergent tail end of the sympathetic chains, in charge of its idiosyncratic functions.


Assuntos
Neurônios , Vísceras , Camundongos , Animais , Neurônios/fisiologia , Sistema Nervoso Autônomo , Sistema Nervoso Simpático/metabolismo , Pelve
5.
Obesity (Silver Spring) ; 32(4): 710-722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311801

RESUMO

OBJECTIVE: Intestinal gluconeogenesis (IGN), via the initiation of a gut-brain nervous circuit, accounts for the metabolic benefits linked to dietary proteins or fermentable fiber in rodents and has been positively correlated with the rapid amelioration of body weight after gastric bypass surgery in humans with obesity. In particular, the activation of IGN moderates the development of hepatic steatosis accompanying obesity. In this study, we investigated the specific effects of IGN on adipose tissue metabolism, independent of its induction by nutritional manipulation. METHODS: We used two transgenic mouse models of suppression or overexpression of G6pc1, the catalytic subunit of glucose-6 phosphatase, which is the key enzyme of endogenous glucose production specifically in the intestine. RESULTS: Under a hypercaloric diet, mice overexpressing IGN showed lower adiposity and higher thermogenic capacities than wild-type mice, featuring marked browning of white adipose tissue (WAT) and prevention of the whitening of brown adipose tissue (BAT). Sympathetic denervation restricted to BAT caused the loss of the antiobesity effects associated with IGN. Conversely, IGN-deficient mice exhibited an increase in adiposity under a standard diet, which was associated with decreased expression of markers of thermogenesis in both BAT and WAT. CONCLUSIONS: IGN is sufficient to activate the sympathetic nervous system and prevent the expansion and the metabolic alterations of BAT and WAT metabolism under a high-calorie diet, thereby preventing the development of obesity. These data increase knowledge of the mechanisms of weight reduction in gastric bypass surgery and pave the way for new approaches to prevent or cure obesity.


Assuntos
Tecido Adiposo Marrom , Gluconeogênese , Humanos , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Gluconeogênese/genética , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Metabolismo Energético
6.
High Alt Med Biol ; 25(1): 77-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241485

RESUMO

Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.


Assuntos
Hipertensão , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Ratos Endogâmicos SHR , Receptores de N-Metil-D-Aspartato/metabolismo , Ratos Endogâmicos WKY , Enzima de Conversão de Angiotensina 2/metabolismo , Hipotálamo , Hipertensão/etiologia , Hipertensão/terapia , Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacologia
7.
Am J Physiol Endocrinol Metab ; 326(2): E107-E123, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170164

RESUMO

Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.


Assuntos
Fígado , Neurônios , Humanos , Fígado/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo , Polímeros , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Neuroendocrinology ; 114(1): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37598678

RESUMO

Hypertension is among the most harmful factors of cardiovascular and cerebrovascular diseases and poses an urgent problem for the development of human society. In addition to previous studies on its pathogenesis focusing on the peripheral sympathetic nervous system, investigating the central causes of high blood pressure involving the neuroendocrine and neuroinflammatory mechanisms of the hypothalamic paraventricular nucleus (PVN) is paramount. This nucleus is considered to regulate the output of neurohormones and sympathetic nerve activity. In this article, we focussed on the neuroendocrine mechanism, primarily exploring the specific contributions and interactions of various neurons and neuroendocrine hormones, including GABAergic and glutamatergic neurons, nitric oxide, arginine vasopressin, oxytocin, and the renin-angiotensin system. Additionally, the neuroinflammatory mechanism in the PVN was discussed, encompassing microglia, reactive oxygen species, inflammatory factors, and pathways, as well as immune connections between the brain and extracerebral organs. Notably, the two central mechanisms involved in the PVN not only exist independently but also communicate with each other, jointly maintaining the hypertensive state of the body. Furthermore, we introduce well-known molecules and signal transduction pathways within the PVN that can play a regulatory role in the two mechanisms to provide a basis and inspire ideas for further research.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Humanos , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Sistema Nervoso Simpático/metabolismo , Neurônios/fisiologia
9.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160798

RESUMO

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Assuntos
Desmetilação do DNA , Hipotálamo , Receptor Tipo 1 de Angiotensina , Membro 2 da Família 12 de Carreador de Soluto , Animais , Ratos , Pressão Sanguínea , DNA/metabolismo , Hipertensão/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/metabolismo , RNA Mensageiro/genética , Sistema Nervoso Simpático/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
10.
Heart Rhythm ; 21(5): 610-619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38160759

RESUMO

BACKGROUND: Neural remodeling in the left stellate ganglion (LSG), as mediated by neuroimmune reactions, promotes cardiac sympathetic nerve activity (SNA) and thus increases the incidence of ventricular arrhythmias (VAs). Interleukin-6 (IL-6) is an important factor of the neuroimmune interaction. OBJECTIVE: The present study explored the effects of IL-6 on LSG hyperactivity and the incidence of VAs. METHODS: Eighteen beagles were randomly allocated to a control group (saline with myocardial infarction [MI], n = 6), adeno-associated virus (AAV) group (AAV with MI, n = 6), and IL-6 group (overexpression of IL-6 via AAV vector with MI, n = 6). Ambulatory electrocardiography was performed before and 30 days after AAV microinjection into the LSG. LSG function and ventricular electrophysiology were assessed at 31 days after surgery, and a canine MI model was established. Samples of the LSG were collected for immunofluorescence staining and molecular biological evaluation. Blood samples and 24-hour Holter data were obtained from 24 patients with acute MI on the day after they underwent percutaneous coronary intervention to assess the correlation between IL-6 levels and SNA. RESULTS: IL-6 overexpression increased cardiac SNA and worsened postinfarction VAs. Furthermore, sustained IL-6 overexpression enhanced LSG function, promoted expression of nerve growth factor, c-fos, and fos B in the LSG, and activated the signal transducer and activator of transcription 3/regulator of G protein signalling 4 signaling pathway. Clinical sample analysis revealed a correlation between serum IL-6 levels and heart rate variability frequency domain index as well as T-wave alternans. CONCLUSION: IL-6 levels are correlated with cardiac SNA. Chronic overexpression of IL-6 mediates LSG neural remodeling through the signal transducer and activator of transcription 3/regulator of G protein signalling 4 signaling pathway, elevating the risk of VA after MI.


Assuntos
Modelos Animais de Doenças , Interleucina-6 , Gânglio Estrelado , Animais , Cães , Interleucina-6/metabolismo , Gânglio Estrelado/metabolismo , Arritmias Cardíacas/etiologia , Masculino , Eletrocardiografia Ambulatorial/métodos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Neuroimunomodulação/fisiologia , Humanos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia
11.
PLoS One ; 18(11): e0294069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943894

RESUMO

Numerous vital signs are reported in association with stress response assessment, but their application varies widely. This work provides an overview over methods for stress induction and strain assessment, and presents a multimodal experimental study to identify the most important vital signs for effective assessment of the response to acute mental stress. We induced acute mental stress in 65 healthy participants with the Mannheim Multicomponent Stress Test and acquired self-assessment measures (Likert scale, Self-Assessment Manikin), salivary α-amylase and cortisol concentrations as well as 60 vital signs from biosignals, such as heart rate variability parameters, QT variability parameters, skin conductance level, and breath rate. By means of statistical testing and a self-optimizing logistic regression, we identified the most important biosignal vital signs. Fifteen biosignal vital signs related to ventricular repolarization variability, blood pressure, skin conductance, and respiration showed significant results. The logistic regression converged with QT variability index, left ventricular work index, earlobe pulse arrival time, skin conductance level, rise time and number of skin conductance responses, breath rate, and breath rate variability (F1 = 0.82). Self-assessment measures indicated successful stress induction. α-amylase and cortisol showed effect sizes of -0.78 and 0.55, respectively. In summary, the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system were successfully activated. Our findings facilitate a coherent and integrative understanding of the assessment of the stress response and help to align applications and future research concerning acute mental stress.


Assuntos
Hidrocortisona , alfa-Amilases Salivares , Humanos , Estresse Psicológico , Sistema Nervoso Simpático/metabolismo , alfa-Amilases Salivares/metabolismo , Pressão Sanguínea , Saliva/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
12.
J Mol Cell Cardiol ; 184: 37-47, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783395

RESUMO

Psychological stress has been recognized as a contributing factor to worsened prognosis in patients with cardiac failure following myocardial infarction (MI). Although the ventrolateral part of the ventromedial hypothalamus (VMHVL) has been implicated in emotional distress, its involvement in post-MI cardiac dysfunction remains largely unexplored. This study was designed to investigate the effect of the VMHVL activation in the MI rat model and its underlying mechanisms. Our findings demonstrate that activation of VMHVL neurons enhances the activity of the cardiac sympathetic nervous system through the paraventricular nucleus (PVN) and superior cervical ganglion (SCG). This activation leads to an elevation in catecholamine levels, which subsequently modulates myosin function and triggers the release of anti-inflammatory factors, to exacerbate the post-MI cardiac prognosis. The denervation of the superior cervical ganglion (SGN) effectively blocked the cardiac sympathetic effects induced by the VMHVL activation, and ameliorated the cardia fibrosis and dysfunction. Therefore, our study identified the role of the "VMHVL-PVN-SCG" sympathetic pathway in the post-MI heart, and proposed SGN as a promising strategy in mitigating cardiac prognosis in stressful rats.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ratos , Animais , Infarto do Miocárdio/metabolismo , Coração , Sistema Nervoso Simpático/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
13.
J Neuroendocrinol ; 35(8): e13313, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37404042

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important regulator of the stress response in mammals, influencing both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). PACAP has been reported to influence energy homeostasis, including adaptive thermogenesis, an energy burning process in adipose tissue regulated by the SNS in response to cold stress and overfeeding. While research suggests PACAP acts centrally at the level of the hypothalamus, knowledge of PACAP's role within the sympathetic nerves innervating adipose tissues in response to metabolic stressors is limited. This work shows, for the first time, gene expression of PACAP receptors in stellate ganglia and highlights some differential expression with housing temperature. Additionally, we present our dissection protocol, analysis of tyrosine hydroxylase gene expression as a molecular biomarker for catecholamine producing tissue and recommend three stable reference genes for the normalization of quantitative real time-polymerase chain reaction (qRT-PCR) data when working with this tissue. This study adds to information about neuropeptide receptor expression in peripheral ganglia of the sympathetic nervous system innervating adipose tissue and provides insight into PACAP's role in the regulation of energy metabolism.


Assuntos
Sistema Nervoso Autônomo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Sistema Nervoso Autônomo/metabolismo , Gânglios Simpáticos/metabolismo , Sistema Nervoso Simpático/metabolismo , Expressão Gênica , Tecido Adiposo/metabolismo , Mamíferos
14.
Z Rheumatol ; 82(6): 451-461, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37488245

RESUMO

In this review article the current model of the interaction between the sympathetic nervous system (SNS) and the immune system in the context of chronic inflammation is presented. Mechanisms in the interaction between the SNS and the immune system are shown, which are similar for all disease entities: 1) the biphasic effect of the sympathetic system on the inflammatory response with a proinflammatory, stimulating effect before and during the activation of the immune system (early) and a more inhibitory effect in late phases of immune activation (chronic). 2) The interruption of communication between immune cells and the brain by withdrawal of sympathetic nerve fibers from areas of inflammation, such as the spleen, lymph nodes or peripheral foci of inflammation. 3) The local replacement of catecholamines by neurotransmitter-producing cells to fine-tune the local immune response independently of the brain. 4) Increased activity of the SNS due to an imbalance of the autonomic nervous system at the systemic level, which provides an explanation for known disease sequelae and comorbidities due to the long duration of chronic inflammatory reactions, such as increased cardiovascular risk with hypertension, diabetes mellitus and catabolic metabolism. The understanding of neuroimmune interactions can lead to new therapeutic approaches, e.g., a stimulation of beta-adrenergic and even more an inhibition of alpha-adrenergic receptors or a restoration of the autonomic balance in the context of arthritis ) can make an anti-inflammatory contribution (more influence of the vagus nerve); however, in order to translate the theoretical findings into clinical action that is beneficial for the patient, controlled interventional studies are required.


Assuntos
Artrite , Sistema Nervoso Simpático , Humanos , Sistema Nervoso Simpático/metabolismo , Inflamação , Sistema Imunitário , Baço/inervação , Baço/metabolismo
15.
Curr Opin Hematol ; 30(4): 124-129, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052297

RESUMO

PURPOSE OF REVIEW: Granulocyte colony-stimulating factor (G-CSF) is now a standard agent to mobilize hematopoietic stem cells (HSCs) from the bone marrow to circulation. This review introduced mechanistic insights from the aspect of the sympathetic nervous system (SNS). RECENT FINDINGS: Mobilization efficiency is determined by the balance between promotion and suppression pathways critically regulated by the SNS. G-CSF-induced high catecholaminergic tone promotes mobilization by (1) the strong suppression of osteolineage cells as a hematopoietic microenvironment and (2) fibroblast growth factor 23 production from erythroblasts, which inhibits CXCR4 function in HSCs. Simultaneously, SNS signals inhibit mobilization by (1) prostaglandin E2 production from mature neutrophils to induce osteopontin in osteoblasts to anchor HSCs and (2) angiopoietin-like protein 4 production from immature neutrophils via peroxisome proliferator-activated receptor δ to inhibit BM vascular permeability. SUMMARY: We now know not only the regulatory mechanisms of G-CSF-induced mobilization but also the leads about unfavorable clinical phenomena, such as low-grade fever, bone pain, and poor mobilizers. Recent understanding of the mechanism will assist clinicians in the treatment for mobilization and researchers in the studies of the hidden potential of BM.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Sistema Nervoso Simpático/metabolismo
16.
Cardiovasc Diabetol ; 22(1): 88, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072781

RESUMO

BACKGROUND: An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS: Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS: We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS: We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Camundongos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/genética , Coração/inervação , Miocárdio/metabolismo , Sistema Nervoso Simpático/metabolismo
17.
Neuropharmacology ; 230: 109506, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924924

RESUMO

Hyperactivity of presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) plays a key role in generating excess sympathetic output in hypertension. However, the mechanisms driving hyperactivity of PVN presympathetic neurons in hypertension are unclear. In this study, we determined the role of corticotropin-releasing factor (CRF) in the PVN in augmented glutamatergic input, neuronal excitability and sympathetic outflow in hypertension. The number of CRF or c-Fos immunoreactive neurons and CRF/c-Fos double-labeled neurons in the PVN was significantly greater in spontaneously hypertensive rats (SHRs) than in normotensive Wistar-Kyoto (WKY) rats. Blocking glutamatergic input reduced the CRF-potentiated excitability of spinally projecting PVN neurons. Furthermore, CRF knockdown via Crispr/Cas9 in the PVN decreased the frequencies of spontaneous firing and miniature excitatory postsynaptic currents (mEPSCs) in spinally projecting PVN neurons in SHRs. In addition, the mRNA and protein levels of CRFR1, but not CRFR2, in the PVN were significantly higher in SHRs than in WKY rats. Blocking CRFR1 with NBI-35965, but not blocking CRFR2 with Antisauvagine-30, reduced the frequencies of spontaneous firing and mEPSCs of spinally projecting PVN neurons in SHRs. Also, microinjection of NBI-35965 into the PVN significantly reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized SHRs, but not in WKY rats. However, microinjection of Antisauvagine-30 into the PVN had no effect on ABP or RSNA in WKY rats and SHRs. Our findings suggest that endogenous CRF in the PVN potentiates glutamatergic input and firing activity of PVN presympathetic neurons via CRFR1, resulting in augmented sympathetic outflow in hypertension.


Assuntos
Hormônio Liberador da Corticotropina , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipertensão/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo
18.
CNS Neurosci Ther ; 29(7): 1830-1847, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36852438

RESUMO

AIMS: The rostral ventrolateral medulla (RVLM) is an essential vasomotor center responsible for regulating the development of stress-induced hypertension (SIH). Long non-coding RNAs (lncRNAs) play critical roles in various physiopathology processes, but existing research on the functions of RVLM lncRNAs on SIH has been lacking. In this study, we investigated the roles of RVLM lncRNAs in SIH. METHODS: Genome-wide lncRNA profiles in RVLM were determined by RNA sequencing in a SIH rat model established using electric foot shocks plus noises. The hypotensive effect of lncRNA INPP5F and the underlying mechanisms of lncRNA INPP5F on SIH were explored through in vivo and in vitro experiments, such as intra-RVLM microinjection and immunofluorescence. RESULTS: We discovered 10,179 lncRNA transcripts, among which the lncRNA INPP5F expression level was significantly decreased in SIH rats. Overexpression of lncRNA INPP5F in RVLM dramatically reduced the blood pressure, sympathetic nerve activity, and neuronal excitability of SIH rats. LncRNA INPP5F overexpression markedly increased Cttn expression and reduced neural apoptosis by activating the PI3K-AKT pathway, and its inhibition had opposite effects. Mechanistically, lncRNA INPP5F acted as a sponge of miR-335, which further regulated the Cttn expression. CONCLUSION: LncRNA INPP5F was a key factor that inhibited SIH progression, and the identified lncRNA INPP5F/miR-335/Cttn/PI3K-AKT/apoptosis axis represented one of the possible mechanisms. LncRNA INPP5F could serve as a therapeutic target for SIH.


Assuntos
Hipertensão , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Nervoso Simpático/metabolismo , Cortactina/metabolismo , Cortactina/farmacologia
19.
Neurosci Lett ; 799: 137130, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792026

RESUMO

Brown adipose tissue (BAT) activity is controlled by the sympathetic nervous system. Activation of BAT has shown significant promise in preclinical studies to elicit weight loss. Since the hypothalamic paraventricular nucleus (PVN) contributes to the regulation of BAT thermogenic activity, we sought to determine the effects of electrical stimulation of the PVN as a model of deep brain stimulation (DBS) for increasing BAT sympathetic nerve activity (SNA). The rostral raphe pallidus area (rRPa) was also chosen as a target for DBS since it contains the sympathetic premotor neurons for BAT. Electrical stimulation (100 µA, 100 µs, 100 Hz, for 5 min at a 50 % duty cycle) of the PVN increased BAT SNA and BAT thermogenesis. These effects were prevented by a local nanoinjection of bicuculline, a GABAA receptor antagonist. We suggest that electrical stimulation of the PVN elicited local release of GABA, which inhibited BAT sympathoinhibitory neurons in PVN, thereby releasing a restraint on BAT SNA. Electrical stimulation of the rRPa inhibited BAT thermogenesis and this was prevented by a local nanoinjection of bicuculline, suggesting that local release of GABA suppressed BAT SNA. Electrical stimulation of the PVN activates BAT metabolism via a mechanism that may include activation of local GABAA receptors. These findings contribute to our understanding of the mechanisms underlying the effects of DBS in the regulation of fat metabolism and provide a foundation for further DBS studies targeting hypothalamic circuits regulating BAT thermogenesis as a therapy for obesity.


Assuntos
Estimulação Encefálica Profunda , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Ratos Sprague-Dawley , Bicuculina/farmacologia , Tecido Adiposo Marrom/inervação , Termogênese , Hipotálamo , Ácido gama-Aminobutírico/metabolismo , Sistema Nervoso Simpático/metabolismo
20.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768369

RESUMO

In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.


Assuntos
Complicações do Diabetes , Úlcera Cutânea , Pele , Sistema Nervoso Simpático , Cicatrização , Humanos , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Hemodinâmica , Inflamação/metabolismo , Receptores Adrenérgicos/metabolismo , Cicatrização/fisiologia , Sistema Nervoso Simpático/metabolismo , Neurônios/metabolismo , Vasoconstrição/fisiologia , Pele/irrigação sanguínea , Pele/metabolismo , Úlcera Cutânea/metabolismo , Úlcera Cutânea/fisiopatologia , Neuropeptídeo Y/metabolismo , Norepinefrina/metabolismo , Acetilcolina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...