Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Sci Total Environ ; 912: 169067, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38049001

RESUMO

Ultrafine particles (UFPs) in urban air environments have been an essential public health concern. The inhalation of UFPs can introduce transition metals contained in the UFP into the human airways, leading to adverse health effects. Therefore, it is crucial to investigate urban air UFP exposure and health risks induced by transition metals. This research carried out a series of field measurements to study urban air UFP exposure in the Greater Houston Area. Three sampling sites in the Greater Houston Area representing varying levels of UFP exposures were selected. The newly developed Mobile Aerosol Lung Deposition Apparatus (MALDA) which consists of a complete set of human airway replicas and a pair of UFP particle sizers was deployed in the sampling sites during three sampling timeframes (morning rush hours, noon, and afternoon rush hours) to obtain on-site UFP respiratory deposition data. UFP samples were collected at the sampling sites for metal composition analysis. The acquired UFP respiratory deposition data and UFP composition data were then used to calculate the respiratory deposited mass of transition metals and estimate the associated health risks for individuals living near sampling sites. Our results showed that transition metal-induced non-cancer risks caused by exposure to urban UFPs were within acceptable limits. The estimated lifetime excess cancer risks were generally <10-6, indicating an overall acceptable level of transition metal-induced cancer risk.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Saúde Pública , Monitoramento Ambiental , Sistema Respiratório/química , Tamanho da Partícula
2.
Sci Total Environ ; 913: 169683, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160832

RESUMO

Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) µg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Adulto , Humanos , Masculino , Poeira , Poluentes Atmosféricos/análise , Material Particulado/análise , Fumaça/efeitos adversos , Sistema Respiratório/química , Estresse Oxidativo
3.
Environ Sci Technol ; 57(31): 11605-11611, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487019

RESUMO

Fine particulate matter is a leading air pollutant, and its composition profile relates to sources and health effects. The human respiratory tract hosts a warmer and more humid microenvironment in contrast with peripheral environments. However, how the human respiratory tract impacts the transformation of the composition of environmental PM2.5 once they are inhaled and consequently changes of source contribution and health effects are unknown. Here, we show that the respiratory tract can make these properties of PM2.5 reaching the lung different from environmental PM2.5. We found via an in vitro model that the warm and humid conditions drive the desorption of nitrate (about 60%) and ammonium (about 31%) out of PM2.5 during the inhalation process and consequently make source contribution profiles for respiratory tract-deposited PM2.5 different from that for environmental PM2.5 as suggested in 11 Chinese cities and 12 US cities. We also observed that oxidative potential, one of the main health risk causes of PM2.5, increases by 41% after PM2.5 travels through the respiratory tract model. Our results reveal that PM2.5 inhaled in the lung differs from environmental PM2.5. This work provides a starting point for more health-oriented source apportionment, physiology-based health evaluation, and cost-effective control of PM2.5 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , Sistema Respiratório/química , Estresse Oxidativo
4.
Front Public Health ; 11: 1148974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151597

RESUMO

Additive manufacturing (AM), or 3D printing, is a growing industry involving a wide range of different techniques and materials. The potential toxicological effects of emissions produced in the process, involving both ultrafine particles and volatile organic compounds (VOCs), are unclear, and there are concerns regarding possible health implications among AM operators. The objective of this study was to screen the presence of respiratory health effects among people working with liquid, powdered, or filament plastic materials in AM. Methods: In total, 18 subjects working with different additive manufacturing techniques and production of filament with polymer feedstock and 20 controls participated in the study. Study subjects filled out a questionnaire and underwent blood and urine sampling, spirometry, impulse oscillometry (IOS), exhaled NO test (FeNO), and collection of particles in exhaled air (PEx), and the exposure was assessed. Analysis of exhaled particles included lung surfactant components such as surfactant protein A (SP-A) and phosphatidylcholines. SP-A and albumin were determined using ELISA. Using reversed-phase liquid chromatography and targeted mass spectrometry, the relative abundance of 15 species of phosphatidylcholine (PC) was determined in exhaled particles. The results were evaluated by univariate and multivariate statistical analyses (principal component analysis). Results: Exposure and emission measurements in AM settings revealed a large variation in particle and VOC concentrations as well as the composition of VOCs, depending on the AM technique and feedstock. Levels of FeNO, IOS, and spirometry parameters were within clinical reference values for all AM operators. There was a difference in the relative abundance of saturated, notably dipalmitoylphosphatidylcholine (PC16:0_16:0), and unsaturated lung surfactant lipids in exhaled particles between controls and AM operators. Conclusion: There were no statistically significant differences between AM operators and controls for the different health examinations, which may be due to the low number of participants. However, the observed difference in the PC lipid profile in exhaled particles indicates a possible impact of the exposure and could be used as possible early biomarkers of adverse effects in the airways.


Assuntos
Expiração , Polímeros , Humanos , Material Particulado/análise , Sistema Respiratório/química , Tensoativos
5.
Sci Total Environ ; 891: 164391, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244612

RESUMO

Black carbon (BC) has a significantly negative impact on air quality, climate and human health. Here we investigated the sources and health effects of BC in urban area of the Pearl River Delta (PRD) based on online data measured by Aerodyne soot particle high-resolution time of flight aerosol mass spectrometer (SP-AMS). In urban PRD, BC particles mainly came from vehicle emissions especially heavy-duty vehicle exhausts (contributing 42.9 % of total BC mass concentration), long-range transport (27.6 %), and aged biomass combustion emissions (22.3 %). Indicated by source analysis using simultaneous aethalometer data, BC associated with local secondary oxidation and transport may also be originated from fossil fuel combustion, especially traffic sources in urban and surrounding areas. Size-resolved BC mass concentrations provided by SP-AMS, for the first time to our best knowledge, were used to calculate BC deposition in the human respiratory tract (HRT) of different populations (children, adults, and the elderly) by the Multiple-Path Particle Dosimetry (MPPD) model. We found that submicron BC was deposited more in the pulmonary (P) region (49.0-53.2 % of the total BC deposition dose), while less in the tracheobronchial (TB, 35.6-37.2 %) and head (HA, 11.2-13.8 %) regions. Adults suffered the highest BC deposition (1.19 µg day-1) than the elderly (1.09 µg day-1) and children (0.25 µg day-1). BC deposition rate was greater at night (especially 18:00-24:00) than during the daytime. The maximum deposition in the HRT was found for BC particles around 100 nm, mainly in deeper respiratory regions (TB and P), which may cause more serious health effects. Adults and the elderly group are confronted with the notable carcinogenic risk of BC in the urban PRD, up to 29 times higher than the threshold. Our study emphasizes the need to control BC pollution in the urban area, especially nighttime vehicle emissions.


Assuntos
Poluentes Atmosféricos , Adulto , Idoso , Criança , Humanos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Fuligem/análise , Rios , China , Atmosfera/análise , Sistema Respiratório/química , Aerossóis/análise , Carbono/análise , Material Particulado/análise
6.
Anaesthesia ; 78(6): 712-721, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37010959

RESUMO

Ventilator-associated pneumonia commonly occurs in critically ill patients. Clinical suspicion results in overuse of antibiotics, which in turn promotes antimicrobial resistance. Detection of volatile organic compounds in the exhaled breath of critically ill patients might allow earlier detection of pneumonia and avoid unnecessary antibiotic prescription. We report a proof of concept study for non-invasive diagnosis of ventilator-associated pneumonia in intensive care (the BRAVo study). Mechanically ventilated critically ill patients commenced on antibiotics for clinical suspicion of ventilator-associated pneumonia were recruited within the first 24 h of treatment. Paired exhaled breath and respiratory tract samples were collected. Exhaled breath was captured on sorbent tubes and then analysed using thermal desorption gas chromatography-mass spectrometry to detect volatile organic compounds. Microbiological culture of a pathogenic bacteria in respiratory tract samples provided confirmation of ventilator-associated pneumonia. Univariable and multivariable analyses of volatile organic compounds were performed to identify potential biomarkers for a 'rule-out' test. Ninety-six participants were enrolled in the trial, with exhaled breath available from 92. Of all compounds tested, the four highest performing candidate biomarkers were benzene, cyclohexanone, pentanol and undecanal with area under the receiver operating characteristic curve ranging from 0.67 to 0.77 and negative predictive values from 85% to 88%. Identified volatile organic compounds in the exhaled breath of mechanically ventilated critically ill patients show promise as a useful non-invasive 'rule-out' test for ventilator-associated pneumonia.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Compostos Orgânicos Voláteis , Humanos , Biomarcadores , Testes Respiratórios/métodos , Estado Terminal , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Sistema Respiratório/química , Compostos Orgânicos Voláteis/análise
7.
Environ Pollut ; 326: 121463, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958658

RESUMO

Studies investigating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in the respiratory system of healthy subjects are scarce. Moreover, separate studies on the health-related outcomes of air pollution for each sex are limited. The current panel study investigated sex-specific Nrf2 expression levels and related oxidative stress and inflammatory responses among healthy adolescents exposed to PM2.5, PM10, O3, and PM2.5-bounded metals in a high traffic region. Forty-nine healthy nonsmoking subjects participated in the study for five consecutive months (Nov. 2019 to Feb. 2020). Each subject was asked to provide 1 mL of exhaled breath condensate (EBC). Data were analyzed using linear mixed-effects models. The results showed that PM10, PM2.5, O3, and PM2.5-bounded metals were negatively linked to Nrf2 expression level in EBC of females with -58.3% (95% CI: 79.5, -15.4), -32.1% (95% CI: -50.3, -7.1), -76.2% (95% CI: -92.6, -23.9), and -1.9 (95% CI: -3.4, -0.4), respectively. While our results presented no significant association between the studied pollutants and Nrf2 gene expression in males, significant associations were observed between the pollutants and total nitric oxide (NOx), interleukins 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the EBC of females. In the case of males, only EBC cytokines showed a significant association with air pollutants. Overall, this study suggests that exposure to ambient air pollutants may affect the respiratory system with biologically different mechanisms in males and females. PM2.5 concentration had a positive correlation with exhaled TNF-α and IL6 values in females while positive correlation with TNF-α and negative correlation with IL6 values in males. O3 had a negative correlation with TNF-α in males.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Adolescente , Feminino , Humanos , Masculino , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomarcadores/metabolismo , Expressão Gênica , Interleucina-6 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Material Particulado/análise , Sistema Respiratório/química , Fator de Necrose Tumoral alfa/genética
8.
Environ Pollut ; 307: 119593, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35680068

RESUMO

Atmospheric bioaerosols contain live and dead biological components that can enter the human respiratory tract (HRT) and affect human health. Here, the total microorganisms in a coastal megacity, Qingdao, were characterized on the basis of long-term observations from October 2013 to January 2021. Particular attention was given to the size dependence of inhalable bioaerosols in concentration and respiratory deposition in different populations on foggy and hazy days. Bioaerosol samples stained with 4,6-diamidino-2-phenylindole (DAPI) were selected to measure the total airborne microbe (TAM) concentrations with an epifluorescence microscope, while a multiple-path particle dosimetry model was employed to calculate respiratory deposition. The mean TAM concentrations in the particle size range of 0.65-1.1 µm (TAM0.65-1.1) were 1.23, 2.02, 1.60 and 2.33 times those on sunny reference days relative to the corresponding values on days with slight, mild, moderate and severe levels of haze, respectively. The mean concentration of TAMs in the particle size range of 0.65-2.1 µm (TAM0.65-2.1) on severely hazy days was (2.02 ± 3.28) × 105 cells/m3, with a reduction of 4.16% relative to that on the reference days. The mean TAM0.65-2.1 concentration changed from (1.50 ± 1.37) × 105 cells/m3 to (1.76 ± 1.36) × 105 cells/m3, with TAM0.65-1.1 increasing from (7.91 ± 7.97) × 104 cells/m3 to (1.76 ± 1.33) × 105 cells/m3 on days with light fog days and medium fog, respectively. The modeling results showed that the majority of TAM0.65-2.1 deposition occurred in the extrathoracic (ET) region, followed by the alveolar (AL) region. When different populations were examined separately, the deposition doses (DDs) in adult females and in children ranked at the minimum value (6.19 × 103 cells/h) and maximum value (1.08 × 104 cells/h), respectively. However, the inhalation risks on polluted days, such as hazy, foggy and mixed hazy-foggy (HF) days, were still below the threshold for adverse impacts on human health.


Assuntos
Poluentes Atmosféricos , Material Particulado , Adulto , Aerossóis/análise , Poluentes Atmosféricos/análise , Criança , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Sistema Respiratório/química
9.
Indoor Air ; 32(5): e13053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622719

RESUMO

Due to the growing maker culture, maker spaces using multiple fused deposition modeling (FDM)-3D printers have spread around the world. However, the 3D printing process is known to cause the release of ultrafine and fine particles, which may have adverse health effects on occupants. Therefore, this experiment-based study was conducted on FDM-3D printers placed in an actual makerspace by the following three scenarios: the number of operating FDM-3D printers, ventilation, and measurement location to compare the concentrations of ultrafine and fine particles. In addition, the deposited dose in alveolar region for ultrafine and fine particles was predicted using a respiratory deposition model to analyze the potential health risk on occupants. As a result, the scenario-based comparison revealed that if the number of operating 3D printers is reduced by less than half, the potential health risk can be decreased by 34.1%, proper ventilation can reduce potential health risk by 55.5%, and working away from the 3D printer can also reduce potential health risk by up to 27.5%. This study analyzed the potential health risk of multiple FDM-3D printers on users in an actual makerspace, and proposed various improvement measures to reduce the potential health risk of ultrafine and fine particles.


Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Material Particulado/análise , Impressão Tridimensional , Sistema Respiratório/química
11.
J Zhejiang Univ Sci B ; 23(2): 153-157, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187888

RESUMO

Radiotherapy uses high-energy X-rays or other particles to destroy cancer cells and medical practitioners have used this approach extensively for cancer treatment (Hachadorian et al., 2020). However, it is accompanied by risks because it seriously harms normal cells while killing cancer cells. The side effects can lower cancer patients' quality of life and are very unpredictable due to individual differences (Bentzen, 2006). Therefore, it is essential to assess a patient's body damage after radiotherapy to formulate an individualized recovery treatment plan. Exhaled volatile organic compounds (VOCs) can be changed by radiotherapy and thus used for medical diagnosis (Vaks et al., 2012). During treatment, high-energy X-rays can induce apoptosis; meanwhile, cell membranes are damaged due to lipid peroxidation, converting unsaturated fatty acids into volatile metabolites (Losada-Barreiro and Bravo-Díaz, 2017). At the same time, radiotherapy oxidizes water, resulting in reactive oxygen species (ROS) that can increase the epithelial permeability of pulmonary alveoli, enabling the respiratory system to exhale volatile metabolites (Davidovich et al., 2013; Popa et al., 2020). These exhaled VOCs can be used to monitor body damage caused by radiotherapy.


Assuntos
Compostos Orgânicos Voláteis , Testes Respiratórios/métodos , Expiração , Humanos , Qualidade de Vida , Sistema Respiratório/química , Compostos Orgânicos Voláteis/análise
12.
Indoor Air ; 32(2): e13009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225380

RESUMO

Between 2007 and 2012, hospitalization rate related to respiratory system diseases in children ≤1-year-old was near 7 times higher in Nunavik compared with the whole province of Quebec. To assess the impact of poor indoor air quality (IAQ) in residential environments on children's respiratory health, the Nunavik's intervention study investigated the impact of the optimization of ventilation systems on the incidence rates of respiratory infections in children in Nunavik. Children under 10 years were recruited and categorized according to the type of ventilation system in their home: energy recovery ventilator (ERV), heat recovery ventilator (HRV), no HRV or ERV, and control groups. Children's' medical records were analyzed over a period of 50 weeks pre- and post-intervention. Clinical diagnoses were classified into 4 categories: upper respiratory infections, lower respiratory infections, otitis media, and asthma. A decrease in respiratory infections episodes was observed in all groups following intervention with the highest impact observed for HRV systems (-53.0%). Decreases in the ERV group were not significant (-21,7%) possibly due to the presence of some volatile organic compound (such as propylene glycol) and inerrant experimental bias. Nevertheless, no significant association was found between health episodes incidence and household's behaviors or IAQ.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Asma , Doenças Respiratórias , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Asma/epidemiologia , Criança , Humanos , Lactente , Sistema Respiratório/química , Doenças Respiratórias/epidemiologia
13.
Chemosphere ; 286(Pt 2): 131741, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358888

RESUMO

Airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are significant contributors leading to many human health issues. Thus, this study was designed to perform chemical analysis and biological impact of airborne particulate matter 10 (PM10) in the World heritage City of Kandy City in Sri Lanka. 12 priority PAHs and 34 metals, including 10 highly toxic HMs were quantified. The biological effects of organic extracts were assayed using an in vitro primary porcine airway epithelial cell culture model. Cytotoxicity, DNA damage, and gene expressions of selected inflammatory and cancer-related genes were also assessed. Results showed that the total PAHs ranged from 3.062 to 36.887 ng/m3. The metals were dominated by Na > Ca > Mg > Al > K > Fe > Ti, while a few toxic HMs were much higher in the air than the existing ambient air quality standards. In the bioassays, a significant cytotoxicity (p < 0.05) was observed at 300 µg/mL treatment, and significant (p < 0.05) DNA damages were noted in all treatment groups. All genes assessed were found to be significantly up-regulated (p < 0.05) after 24 h of exposure and after 48 h, only TGF-ß1 and p53 did not significantly up-regulate (p < 0.05). These findings confirm that the Kandy city air contains potential carcinogenic and mutagenic compounds and thus, exposure to Kandy air may increase the health risks and respiratory tract-related anomalies.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Monitoramento Ambiental , Células Epiteliais , Metais Pesados/análise , Metais Pesados/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sistema Respiratório/química , Sri Lanka , Suínos
14.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929046

RESUMO

Radiotherapy uses high-energy X-rays or other particles to destroy cancer cells and medical practitioners have used this approach extensively for cancer treatment (Hachadorian et al., 2020). However, it is accompanied by risks because it seriously harms normal cells while killing cancer cells. The side effects can lower cancer patients' quality of life and are very unpredictable due to individual differences (Bentzen, 2006). Therefore, it is essential to assess a patient's body damage after radiotherapy to formulate an individualized recovery treatment plan. Exhaled volatile organic compounds (VOCs) can be changed by radiotherapy and thus used for medical diagnosis (Vaks et al., 2012). During treatment, high-energy X-rays can induce apoptosis; meanwhile, cell membranes are damaged due to lipid peroxidation, converting unsaturated fatty acids into volatile metabolites (Losada-Barreiro and Bravo-Díaz, 2017). At the same time, radiotherapy oxidizes water, resulting in reactive oxygen species (ROS) that can increase the epithelial permeability of pulmonary alveoli, enabling the respiratory system to exhale volatile metabolites (Davidovich et al., 2013; Popa et al., 2020). These exhaled VOCs can be used to monitor body damage caused by radiotherapy.


Assuntos
Humanos , Testes Respiratórios/métodos , Expiração , Qualidade de Vida , Sistema Respiratório/química , Compostos Orgânicos Voláteis/análise
15.
PLoS One ; 16(11): e0260098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847181

RESUMO

Disease-related effects on hepatic metabolism can alter the composition of chemicals in the circulation and subsequently in breath. The presence of disease related alterations in exhaled volatile organic compounds could therefore provide a basis for non-invasive biomarkers of hepatic disease. This study examined the feasibility of using global volatolomic profiles from breath analysis in combination with supervised machine learning to develop signature pattern-based biomarkers for cirrhosis. Breath samples were analyzed using thermal desorption-gas chromatography-field asymmetric ion mobility spectroscopy to generate breathomic profiles. A standardized collection protocol and analysis pipeline was used to collect samples from 35 persons with cirrhosis, 4 with non-cirrhotic portal hypertension, and 11 healthy participants. Molecular features of interest were identified to determine their ability to classify cirrhosis or portal hypertension. A molecular feature score was derived that increased with the stage of cirrhosis and had an AUC of 0.78 for detection. Chromatographic breath profiles were utilized to generate machine learning-based classifiers. Algorithmic models could discriminate presence or stage of cirrhosis with a sensitivity of 88-92% and specificity of 75%. These results demonstrate the feasibility of volatolomic profiling to classify clinical phenotypes using global breath output. These studies will pave the way for the development of non-invasive biomarkers of liver disease based on volatolomic signatures found in breath.


Assuntos
Testes Respiratórios/métodos , Hepatopatias/diagnóstico , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Líquidos Corporais/química , Cromatografia Gasosa , Expiração , Feminino , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Hepatopatias/metabolismo , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Campos de Petróleo e Gás , Projetos Piloto , Sistema Respiratório/química
16.
Vet Res ; 52(1): 121, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530902

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is causing a global crisis. It is still unresolved. Although many therapies and vaccines are being studied, they are still in their infancy. As this pandemic continues, rapid and accurate research for the development of therapies and vaccines is needed. Therefore, it is necessary to understand characteristics of diseases caused by SARS-CoV-2 through animal models. Syrian hamsters are known to be susceptible to SARS-CoV-2. They were intranasally inoculated with SARS-CoV-2. At 2, 4, 8, 12, and 16 days post-infection (dpi), these hamsters were euthanized, and tissues were collected for ultrastructural and microstructural examinations. Microscopic lesions were prominent in the upper and lower respiratory tracts from 2 and 4 dpi groups, respectively. The respiratory epithelium in the trachea, bronchiole, and alveolar showed pathological changes. Inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils were infiltrated in/around tracheal lamina propria, pulmonary vessels, alveoli, and bronchiole. In pulmonary lesions, alveolar wall was thickened with infiltrated inflammatory cells, mainly neutrophils and macrophages. In the trachea, epithelial damages started from 2 dpi and recovered from 8 dpi, consistent with microscopic results, High levels of SARS-CoV-2 nucleoprotein were detected at 2 dpi and 4 dpi. In the lung, lesions were most severe at 8 dpi. Meanwhile, high levels of SARS-CoV-2 were detected at 4 dpi. Electron microscopic examinations revealed cellular changes in the trachea epithelium and alveolar epithelium such as vacuolation, sparse micro-organelle, and poor cellular margin. In the trachea epithelium, the number of cytoplasmic organelles was diminished, and small vesicles were prominent from 2 dpi. Some of these electron-lucent vesicles were filled with virion particles. From 8 dpi, the trachea epithelium started to recover. Because of shrunken nucleus and swollen cytoplasm, the N/C ratio of type 2 pneumocyte decreased at 8 and 12 dpi. From 8 dpi, lamellar bodies on type 2 pneumocyte cytoplasm were increasingly observed. Their number then decreased from 16 dpi. However, there was no significant change in type 1 pneumocyte. Viral vesicles were only observed in the cytoplasm of type 2 pneumocyte. In conclusion, ultra- and micro-structural changes presented in this study may provide useful information for SARS-CoV-2 studies in various fields.


Assuntos
COVID-19/patologia , Sistema Respiratório/patologia , SARS-CoV-2/patogenicidade , Animais , Cricetinae , Imuno-Histoquímica/veterinária , Masculino , Mesocricetus , Projetos Piloto , RNA Viral/química , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sistema Respiratório/química , Sistema Respiratório/ultraestrutura , Sistema Respiratório/virologia , Fatores de Tempo , Traqueia/patologia , Traqueia/ultraestrutura , Traqueia/virologia , Redução de Peso
17.
Health Phys ; 121(1): 73-76, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34002728

RESUMO

ABSTRACT: This work considers the implications of cloth masks due to the COVID-19 pandemic on suspected plutonium inhalations and dose assessment. In a plutonium inhalation scenario, the greater filtration efficiency for large particles exhibited by cloth masks can reduce early fecal excretion without a corresponding reduction in dose. For plutonium incidents in which cloth masks are worn, urinary excretion should be the preferred method of inferring dose immediately after the inhalation, and fecal excretion should be considered unreliable for up to 10 days.


Assuntos
COVID-19/prevenção & controle , Fezes/química , Exposição por Inalação/estatística & dados numéricos , Máscaras , Exposição Ocupacional/estatística & dados numéricos , Plutônio/análise , Exposição à Radiação/estatística & dados numéricos , Monitoramento de Radiação , Humanos , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Plutônio/farmacocinética , Exposição à Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Sistema Respiratório/química
18.
Environ Int ; 150: 106413, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582563

RESUMO

Bacterial loading aggravates the health and environmental hazards of particulate matter (PM), particularly in concentrated animal feeding operations. Understanding the association between PM and airborne bacteria is conducive to accurately assessing occupational exposure, providing fundamental data for exposure mitigation via engineering solutions, and providing information regarding the physical properties influencing the transmission of airborne microorganisms at emission sources. In this work, we conducted a joint study to systematically determine the concentrations and size distributions of PM and airborne bacteria, and establish the quantitative relationship between PM and airborne bacteria in laying hen houses. The association between PM and airborne bacteria was expressed as the load of airborne bacteria on PM in terms of the identical particle size interval based on the size-resolved respiratory tract deposition. The concentrations and size distributions of PM and airborne bacteria in laying hen houses were affected by the in-house space (upper and lower), chicken activity (day and night), and outside temperature. The size distributions of PM and airborne bacteria indicated that the mass concentration of large particles decreased with increasing outside temperature, while the concentration of airborne bacteria loaded on the small particles increased with increasing outside temperature. The results indicated that particles with diameters ranging from 2.1 to 4.7 µm carried the most airborne bacteria. Therefore, particles with diameters ranging from 2.1 to 4.7 µm should be the focus of future experimental research on occupational exposure, air quality improvement, and the airborne transmission of PM and airborne microorganisms originating from concentrated layer feeding operations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Animais , Bactérias , Galinhas , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Sistema Respiratório/química
19.
J Environ Qual ; 50(3): 782-790, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616205

RESUMO

Urban gardening has been experiencing increased popularity around the world. Many urban gardens are located on sites that may be contaminated by trace elements or organic compounds due to previous use. The three main exposure pathways to the human body for soil contaminants are (a) ingestion of soil directly, (b) consumption of produce containing or superficially contaminated with a contaminant, (c) and inhalation of soil dust. The first two modes have received much attention; however, the contribution of the inhalation route has not been investigated adequately. Two inhalation risk studies were carried out in urban gardens located in Kansas City, MO, by collecting dust while 25-m2 plots were rototilled. Microclimatic variables were monitored, and total inhalable dust mass was determined using a personal sampling train including a small pump and air filter. Soil lead (Pb) concentration was assessed at both sites. For Study 1, particle size distribution of collected particles was estimated through analysis of scanning electron microscope images of filters. Little dust was collected at either site. Most particles captured, however, appeared to be <4 µm in diameter. The amount of dust emitted was correlated with soil moisture. Tilling reduced soil aggregate size and blended soil, resulting in a more homogeneous distribution of Pb. Dust inhalation while tilling is likely not a major Pb exposure risk for gardeners, but given the preponderance of very small particles in what was captured, care should be taken to prevent dust from entering the respiratory system.


Assuntos
Poluentes do Solo , Solo , Cidades , Poeira/análise , Monitoramento Ambiental , Jardinagem , Jardins , Humanos , Exposição por Inalação , Kansas , Sistema Respiratório/química , Poluentes do Solo/análise
20.
Adv Drug Deliv Rev ; 170: 369-385, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32971228

RESUMO

Effective evaluation and prediction of aerosol transport deposition in the human respiratory tracts are critical to aerosol drug delivery and evaluation of inhalation products. Establishment of an in vitro-in vivo correlation (IVIVC) requires the understanding of flow and aerosol behaviour and underlying mechanisms at the microscopic scale. The achievement of the aim can be facilitated via computational fluid dynamics (CFD) based in silico modelling which treats the aerosol delivery as a two-phase flow. CFD modelling research, in particular coupling with discrete phase model (DPM) and discrete element method (DEM) approaches, has been rapidly developed in the past two decades. This paper reviews the recent development in this area. The paper covers the following aspects: geometric models of the respiratory tract, CFD turbulence models for gas phase and its coupling with DPM/DEM for aerosols, and CFD investigation of the effects of key factors associated with geometric variations, flow and powder characteristics. The review showed that in silico study based on CFD models can effectively evaluate and predict aerosol deposition pattern in human respiratory tracts. The review concludes with recommendations on future research to improve in silico prediction to achieve better IVIVC.


Assuntos
Aerossóis/química , Hidrodinâmica , Sistema Respiratório/química , Administração por Inalação , Aerossóis/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...