Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8013): 762-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778236
2.
Nature ; 611(7935): 245-255, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352134

RESUMO

Volatile elements such as hydrogen, carbon, nitrogen and oxygen are essential ingredients to build habitable worlds like Earth, but their origin and evolution on terrestrial planets remain highly debated. Here we discuss the processes that distributed these elements throughout the early Solar System and how they then became incorporated into planetary building blocks. Volatiles on Earth and the other terrestrial planets appear to have been heterogeneously sourced from different Solar System reservoirs. The sources of planetary volatiles and the timing at which they were accreted to growing planets probably play a crucial role in controlling planet habitability.


Assuntos
Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno , Sistema Solar , Planeta Terra , Meio Ambiente Extraterreno/química , Planetas , Sistema Solar/química
3.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920742

RESUMO

Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPH•, ABTS•+, ROO•, and HOCl/OCl- reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.


Assuntos
Hidróxidos/química , Protetores contra Radiação/química , Raios Ultravioleta/efeitos adversos , Zinco/química , Ânions/química , Antioxidantes/efeitos da radiação , Humanos , Substâncias Intercalantes/química , Metais/química , Espécies Reativas de Oxigênio/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Sistema Solar/química , Análise Espectral
4.
Molecules ; 25(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098386

RESUMO

Meteorites are the recoverable portions of asteroids that reach the surface of the Earth. Meteorites are rare extraterrestrial objects studied extensively to improve our understanding of planetary evolution. In this work, we used calibration-free laser-induced breakdown spectroscopy (CF-LIBS) to evaluate the quantitative elemental and molecular analyses of the Dergaon meteorite, a H 4-5 chondrite fall sample from Assam, India. Spectral signatures of H, N, O, Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, andIrweredetected. Along with the atomic emission, this work reports the molecular emission from FeO molecules. The concentration of the measured elements obtained using CF-LIBS is in close agreement with earlier reports. The elements H, N, and O and their concentrations are estimated by using CF-LIBS for the first time. This study applies laser spectroscopy to establish the presence of Ni, Cr, Co, and Ir in meteorites. The elemental analysis forms the basis for the establishment of the potential molecular composition of the Dergaon meteorite. Moreover, the elemental analysis approach bodes well for in-situ analyses of extraterrestrial objects including applications in planetary rover missions.


Assuntos
Meteoroides , Sistema Solar/química , Análise Espectral/métodos , Humanos , Índia , Lasers
5.
Curr Issues Mol Biol ; 38: 53-74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31967576

RESUMO

Carbon-based compounds are widespread throughout the Universe, including abiotic molecules that are the components of the life as we know it. This article reviews the space missions that have aimed to detect organic matter and biosignatures in planetary bodies of our solar system. While to date there was only one life-detection space mission, i.e., the Viking mission to Mars, several past and present space missions have searched for organic matter, paving the way for the future detection of signatures of extra-terrestrial life. This review also reports on the in-situ analysis of organic matter and sample-return missions from primitive bodies, i.e. comets and asteroids, providing crucial information on the conditions of the early solar system as well as on the building blocks of life delivered to the primitive Earth.


Assuntos
Carbono/química , Meio Ambiente Extraterreno/química , Compostos Orgânicos/química , Sistema Solar/química , Exobiologia , Cromatografia Gasosa-Espectrometria de Massas , História do Século XX , História do Século XXI , Marte , Meteoroides , Planetas Menores , Plutão , Saturno , Voo Espacial/história , Estados Unidos , United States National Aeronautics and Space Administration
6.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978982

RESUMO

The search for biomarkers in our solar system is a fundamental challenge for the space research community. It encompasses major difficulties linked to their very low concentration levels, their ambiguous origins (biotic or abiotic), as well as their diversity and complexity. Even if, in 40 years' time, great improvements in sample pre-treatment, chromatographic separation and mass spectrometry detection have been achieved, there is still a need for new in situ scientific instrumentation. This work presents an original liquid chromatographic system with a trapping unit dedicated to the one-pot detection of a large set of non-volatile extra-terrestrial compounds. It is composed of two units, monitored by a single pump. The first unit is an online trapping unit able to trap polar, apolar, monomeric and polymeric organics. The second unit is an online analytical unit with a high-resolution Q-Orbitrap mass spectrometer. The designed single pump system was as efficient as a laboratory dual-trap LC system for the analysis of amino acids, nucleobases and oligopeptides. The overall setup significantly improves sensitivity, providing limits of detection ranging from ppb to ppt levels, thus meeting with in situ enquiries.


Assuntos
Biomarcadores/química , Cromatografia Líquida , Compostos Orgânicos/química , Sistema Solar/química , Aminoácidos/química , Humanos , Espectrometria de Massas em Tandem
7.
Astrobiology ; 18(12): 1559-1573, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30063167

RESUMO

We present a catalog of spectra and geometric albedos, representative of the different types of solar system bodies, from 0.45 to 2.5 µm. We analyzed published calibrated, uncalibrated spectra, and albedos for solar system objects and derived a set of reference spectra and reference albedos for 19 objects that are representative of the diversity of bodies in our solar system. We also identified previously published data that appear contaminated. Our catalog provides a baseline for comparison of exoplanet observations to 19 bodies in our own solar system, which can assist in the prioritization of exoplanets for time intensive follow-up with next-generation extremely large telescopes and space-based direct observation missions. Using high- and low-resolution spectra of these solar system objects, we also derive colors for these bodies and explore how a color-color diagram could be used to initially distinguish between rocky, icy, and gaseous exoplanets. We explore how the colors of solar system analog bodies would change when orbiting different host stars. This catalog of solar system reference spectra and albedos is available for download through the Carl Sagan Institute.


Assuntos
Exobiologia/estatística & dados numéricos , Meio Ambiente Extraterreno/química , Sistema Solar/química , Atmosfera/análise , Atmosfera/química , Cor , Exobiologia/instrumentação , Exobiologia/métodos , Gases/análise , Gases/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Análise Espectral/estatística & dados numéricos , Telescópios , Água
8.
Molecules ; 21(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527136

RESUMO

Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT) chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs). To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA⁺) in this work. The short-circuit current density (Jsc) of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA) as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE) values in the wavelength range of 400-450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475-600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC.


Assuntos
Porfirinas/química , Sistema Solar/química , Óxido de Zinco/química , Corantes/química , Fontes de Energia Elétrica , Eletrodos , Estrutura Molecular , Energia Solar
9.
Nature ; 526(7575): 678-81, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511578

RESUMO

The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.


Assuntos
Meteoroides , Oxigênio/análise , Monóxido de Carbono/análise , Meio Ambiente Extraterreno/química , Gelo/análise , Nitrogênio/análise , Oxigênio/efeitos da radiação , Fotólise , Sistema Solar/química , Astronave , Água/análise
10.
Molecules ; 19(11): 17329-44, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25353384

RESUMO

There is a clear need to make energy cheap, readily accessible and green, while ensuring its production does not contribute to further climate change. Of all the options available, photovoltaics offer the highest probability of delivering a meaningful and sustainable change in the way society produces its energy. One approach to the development of such photovoltaics involves the use of polymers. These systems offer the advantages of cheap production, flexibility (and hence a range of deployment opportunities) and tunability of light absorption. However, there are issues with polymer-based photovoltaic systems and one significant effort to improve these systems has involved the use of carbon nanotubes (CNTs). This review will focus on those efforts. CNTs have been used in virtually every component of the devices to help charge conduction, improve electrode flexibility and in some cases as active light absorbing materials.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Sistema Solar/química , Mudança Climática , Eletrodos , Luz
11.
Orig Life Evol Biosph ; 44(3): 185-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25351684

RESUMO

The beginning of September 1859 was the occasion of the first and unique observation of a giant solar white light flare, auroral displays were observed at low latitudes and geomagnetic observatories recorded exceptional storms. This paper reviews the impact of the event on the earth system with a special emphasis on living processes using the historical record and current scientific analysis. The data used includes reports from the telegraph operators, mortality and morbidity records, proxies as agricultural production. Comparisons with later solar flare events will be attempted on the basis of the record and the consequences of an event of comparable magnitude to the 1859 set of flares will be discussed.


Assuntos
Frequência Cardíaca/efeitos da radiação , Atividade Solar , Sistema Solar/química , Telecomunicações/história , Agricultura/história , Planeta Terra , Europa (Continente) , História do Século XIX , Humanos , Ozônio Estratosférico/análise , Luz Solar , Estados Unidos
12.
Rep Prog Phys ; 77(6): 066901, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24913306

RESUMO

The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.


Assuntos
Campos Eletromagnéticos , Meio Ambiente Extraterreno/química , Modelos Químicos , Sistema Solar/química , Astros Celestes/química
13.
Proc Natl Acad Sci U S A ; 110(44): 17631-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24167299

RESUMO

Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.


Assuntos
Isótopos/química , Modelos Químicos , Meteorologia/métodos , Oxigênio/química , Sistema Solar/química , Enxofre/química
14.
Proc Natl Acad Sci U S A ; 110(43): 17241-6, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101483

RESUMO

The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.


Assuntos
Meio Ambiente Extraterreno/química , Isótopos/análise , Meteoroides , Sistema Solar/química , Alumínio/química , Bário/química , Cálcio/química , Molibdênio/química , Neodímio/química , Samário/química , Estrôncio/química , Fatores de Tempo
15.
Int J Mol Sci ; 14(10): 20171-88, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24152435

RESUMO

The electronic structures and excitation properties of dye sensitizers determine the photon-to-current conversion efficiency of dye sensitized solar cells (DSSCs). In order to understand the different performance of porphyrin dye sensitizers YD2 and YD2-o-C8 in DSSC, their geometries and electronic structures have been studied using density functional theory (DFT), and the electronic absorption properties have been investigated via time-dependent DFT (TDDFT) with polarizable continuum model for solvent effects. The geometrical parameters indicate that YD2 and YD2-o-C8 have similar conjugate length and charge transfer (CT) distance. According to the experimental spectra, the HSE06 functional in TDDFT is the most suitable functional for describing the Q and B absorption bands of porphyrins. The transition configurations and molecular orbital analysis suggest that the diarylamino groups are major chromophores for effective CT excitations (ECTE), and therefore act as electron donor in photon-induced electron injection in DSSCs. The analysis of excited states properties and the free energy changes for electron injection support that the better performance of YD2-o-C8 in DSSCs result from the more excited states with ECTE character and the larger absolute value of free energy change for electron injection.


Assuntos
Corantes/química , Porfirinas/química , Sistema Solar/química , Absorção , Elétrons
16.
Proc Natl Acad Sci U S A ; 110(22): 8819-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671077

RESUMO

Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.


Assuntos
Alumínio/química , Evolução Planetária , Meteoroides , Radioisótopos/química , Datação Radiométrica/métodos , Sistema Solar/química , Fracionamento Químico , Microanálise por Sonda Eletrônica , Háfnio/química , Isótopos/química , Oxigênio/química , Tungstênio/química
17.
Astrobiology ; 13(4): 324-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23551239

RESUMO

Understanding the processes involved in the evolution of organic matter in the early Solar System requires extensive experimental work. The scientifically valuable carbonaceous chondrites are principal targets for organic analyses, but these meteorites are rare. Meteoritic analog materials available in larger quantities, on which experiments can be performed, would be highly beneficial. The bulk of the organic inventory of carbonaceous chondrites is made up of solvent-insoluble macromolecular material. This high-molecular-weight entity provides a record of thermal and aqueous parent-body alteration of precursor organic structures present at the birth of the Solar System. To identify an effective analogue for this macromolecular material, we analyzed a series of terrestrial kerogens by pyrolysis-gas chromatography-mass spectrometry. Type I and II kerogens are unsuitable analogues owing to their highly aliphatic nature. Type III kerogens show some similarities to meteoritic macromolecular materials but display a substantial biological heritage. Type IV kerogens, in this study derived from Mesozoic paleosols and produced by the reworking and oxidation of organic matter, represent an effective analogue. Some isomeric differences exist between meteoritic macromolecular materials and type IV kerogens, and stepped pyrolysis indicates variations in thermal stability. In addition to being a suitable material for novel experimentation, type IV kerogens also have the potential to aid in the optimization of instruments for deployment on Mars.


Assuntos
Biopolímeros/química , Meio Ambiente Extraterreno/química , Substâncias Macromoleculares/análogos & derivados , Meteoroides , Compostos Orgânicos/análise , Sistema Solar/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Substâncias Macromoleculares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...