Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Pathog ; 18(1): e1009718, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073381

RESUMO

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Salmonella/imunologia , Sistemas de Secreção Tipo III/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Virulência
2.
Toxins (Basel) ; 13(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34941717

RESUMO

Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P. aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to rapidly damage host cell membranes and subvert the innate immune response to infection. Herein, we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU, a highly cytotoxic phospholipase A2 enzyme.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/efeitos dos fármacos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/imunologia , Humanos
3.
Mol Immunol ; 134: 218-227, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823320

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain is known as one of the major human foodborne pathogens. Lack of effective clinical treatment for human diarrheal diseases confirms the need for vaccine production against enteric bacteria such as E.coli O157:H7. Shiga-like toxin (Stx), EscC, and Intimin are the main important virulent factors of this enteric pathogen. In the present study, a comparative Omics analysis was conducted to identify most invasion EHEC antigenic factors as a potential immunogen. SEI (Stx-EscC-Intimin) trivalent chimeric protein was designed from the exposed and epitope rich part of these virulence factors. Sequence optimization, physicochemical properties, mRNA folding, three-dimensional structure and immunoinformatics data were investigated. The chimeric gene was synthesized with codon bias of E. coli. Recombinant protein was expressed and confirmed by western blot analysis. To evaluate the immunogenicity of the designed protein, the protein was administered to BALB/c mice and the serum IgG was determined by ELISA. Based on the Ramachandran plot, the validation data showed that 90.1 % of residues lie in the favored region. The high antigenicity of the multimeric protein was predicted by the immunoinformatic analysis. Epitope prediction had shown the proper distribution of linear and conformational B-cell epitopes and the competition of T-cell epitopes to bind MHC molecules too. Recombinant ESI Protein with 74.5 kDa was expressed in E. coli. Western blot analysis by anti-Stx antibody, confirmed a single band of chimeric protein. Consequently, the chimeric gene was designed and constructed after assessments. From in silico approach, the protein deduced from this cassette can be an immunogen candidate, and act against toxicity and adherence of EHEC.


Assuntos
Adesinas Bacterianas/imunologia , Infecções por Escherichia coli , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Proteínas Recombinantes de Fusão/imunologia , Toxinas Shiga/imunologia , Sistemas de Secreção Tipo III/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana , Biologia Computacional , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/imunologia , Feminino , Genes Bacterianos/imunologia , Camundongos , Camundongos Endogâmicos BALB C
4.
PLoS Negl Trop Dis ; 15(3): e0009231, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711056

RESUMO

Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Disenteria Bacilar/terapia , Salmonelose Animal/terapia , Salmonella typhimurium/imunologia , Shigella flexneri/imunologia , Sistemas de Secreção Tipo III/imunologia , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Disenteria Bacilar/microbiologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Salmonelose Animal/microbiologia
5.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158889

RESUMO

Subcutaneous vaccination of cattle for enterohemorrhagic Escherichia coli O157:H7 reduces the magnitude and duration of fecal shedding, but the often-required, repeated cattle restraint can increase costs, deterring adoption by producers. In contrast, live oral vaccines may be repeatedly administered in feed, without animal restraint. We investigated whether oral immunization with live stx-negative LEE+E. coli O157:H7 reduced rectoanal junction (RAJ) colonization by wild-type (WT) E. coli O157:H7 strains after challenge. Two groups of cattle were orally dosed twice weekly for 6 weeks with 3 × 109 CFU of a pool of three stx-negative LEE+E. coli O157:H7 strains (vaccine group) or three stx-negative LEE- non-O157:H7 E. coli strains (control group). Three weeks following the final oral dose, animals in both groups were orally challenged with a cocktail of four stx+ LEE+E. coli O157:H7 WT strains. Subsequently, WT strains at the RAJ were enumerated weekly for 4 weeks. Serum antibodies against type III secretion protein (TTSP), the translocated intimin receptor (Tir), and EspA were determined by enzyme-linked immunosorbent assay (ELISA) at day 0 (preimmunization), day 61 (postimmunization, prechallenge), and day 89 (postchallenge). Vaccine group cattle had lower numbers of WT strains at the RAJ than control group cattle on postchallenge days 3 and 7 (P ≤ 0.05). Also, vaccine group cattle shed WT strains for a shorter duration than control group cattle. All cattle seroconverted to TTSP, Tir, and EspA, either following immunization (vaccine group) or following challenge (control group). Increased antibody titers against Tir and TTSP postimmunization were associated with decreased numbers of WT E. coli O157:H7 organisms at the RAJ.IMPORTANCE The bacterium E. coli O157:H7 causes foodborne disease in humans that can lead to bloody diarrhea, kidney failure, vascular damage, and death. Healthy cattle are the main source of this human pathogen. Reducing E. coli O157:H7 in cattle will reduce human disease. Using a randomized comparison, a bovine vaccine to reduce carriage of the human pathogen was tested. A detoxified E. coli O157:H7 strain, missing genes that cause disease, was fed to cattle as an oral vaccine to reduce carriage of pathogenic E. coli O157:H7. After vaccination, the cattle were challenged with disease-causing E. coli O157:H7. The vaccinated cattle had decreased E. coli O157:H7 during the first 7 days postchallenge and shed the bacteria for a shorter duration than the nonvaccinated control cattle. The results support optimization of the approach to cattle vaccination that would reduce human disease.


Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/imunologia , Vacinas contra Escherichia coli , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Bovinos , Proteínas de Escherichia coli/imunologia , Masculino , Receptores de Superfície Celular/imunologia , Toxina Shiga , Sistemas de Secreção Tipo III/imunologia , Vacinação/veterinária
6.
Front Immunol ; 11: 583008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281815

RESUMO

Infections caused by the opportunistic pathogen Pseudomonas aeruginosa can be difficult to treat due to innate and acquired antibiotic resistance and this is exacerbated by the emergence of multi-drug resistant strains. Unfortunately, no licensed vaccine yet exists to prevent Pseudomonas infections. Here we describe a novel subunit vaccine that targets the P. aeruginosa type III secretion system (T3SS). This vaccine is based on the novel antigen PaF (Pa Fusion), a fusion of the T3SS needle tip protein, PcrV, and the first of two translocator proteins, PopB. Additionally, PaF is made self-adjuvanting by the N-terminal fusion of the A1 subunit of the mucosal adjuvant double-mutant heat-labile enterotoxin (dmLT). Here we show that this triple fusion, designated L-PaF, can activate dendritic cells in vitro and elicits strong IgG and IgA titers in mice when administered intranasally. This self-adjuvanting vaccine expedites the clearance of P. aeruginosa from the lungs of challenged mice while stimulating host expression of IL-17A, which may be important for generating a protective immune response in humans. L-PaF's protective capacity was recapitulated in a rat pneumonia model, further supporting the efficacy of this novel fusion vaccine.


Assuntos
Anticorpos Antibacterianos/metabolismo , Vacinas Bacterianas/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Células Dendríticas/imunologia , Pneumonia/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Adjuvantes Imunológicos , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Modelos Animais de Doenças , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Citotóxicas Formadoras de Poros/imunologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/imunologia , Sistemas de Secreção Tipo III/imunologia , Vacinação , Vacinas de Subunidades Antigênicas
7.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077628

RESUMO

Bubonic plague results when Yersinia pestis is deposited in the skin via the bite of an infected flea. Bacteria then traffic to the draining lymph node (dLN) where they replicate to large numbers. Without treatment, this infection can result in highly fatal septicemia. Several plague vaccine candidates are currently at various stages of development, but no licensed vaccine is available in the United States. Though polyclonal and monoclonal antibodies (Ab) can provide complete protection against bubonic plague in animal models, the mechanisms responsible for this antibody-mediated immunity (AMI) to Y. pestis remain poorly understood. Here, we examine the effects of Ab opsonization on Y. pestis interactions with phagocytes in vitro and in vivo Opsonization of Y. pestis with polyclonal antiserum modestly increased phagocytosis/killing by an oxidative burst of murine neutrophils in vitro Intravital microscopy (IVM) showed increased association of Ab-opsonized Y. pestis with neutrophils in the dermis in a mouse model of bubonic plague. IVM of popliteal LNs after intradermal (i.d.) injection of bacteria in the footpad revealed increased Y. pestis-neutrophil interactions and increased neutrophil crawling and extravasation in response to Ab-opsonized bacteria. Thus, despite only having a modest effect in in vitro assays, opsonizing Ab had a dramatic effect in vivo on Y. pestis-neutrophil interactions in the dermis and dLN very early after infection. These data shed new light on the importance of neutrophils in AMI to Y. pestis and may provide a new correlate of protection for evaluation of plague vaccine candidates.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peste/etiologia , Peste/patologia , Yersinia pestis/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo
8.
Fish Shellfish Immunol ; 106: 536-545, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763422

RESUMO

Edwardsiella piscicida causes edwardsiellosis in a variety of fish species and leads to tremendous economic losses in the global aquaculture industries. Thus, effective and safe prevention and control of this bacterium are urgently needed to combat the related infections. Live attenuated vaccines (LAVs) effectively prevent infectious diseases. However, most of the existing E. piscicida LAVs are based on the deletion of genes encoding the translocon components of the type III secretion system (T3SS), the core virulence system, which is the most prominent protective bacterial antigen with the strongest immunogenicity. In this study, we systematically deleted all of the 9 established T3SS effectors in E. piscicida (aka 9Δ) and the rpoS gene encoding the alternative sigma factor, the esrB repressor (10Δ), then we overexpressed esrB and T3SS in E. piscicida to obtain the recombinant strain 10Δ/esrBOE. The modified strains 10Δ and 10Δ/esrBOE exhibited severe attenuation and in vivo colonization defects. Additionally, vaccination by intraperitoneal injection with 10Δ and 10Δ/esrBOE could significantly upregulate the expression of the antigen recognition related gene (TLR5) and the adaptive immune response-related gene (MHC II) in the spleen/kidney of turbot fish, and it also enhanced the hosts' serum bactericidal capacity. Finally, vaccination with 10Δ/esrBOE led to increased immune protection against the challenge of wild type E. piscicida EIB202 in turbot fish. Collectively, these findings demonstrated that 10Δ/esrBOE was a novel LAV strain and therefore a potential novel strategy for the construction of LAVs against bacterial pathogens.


Assuntos
Vacinas Bacterianas/imunologia , Edwardsiella/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Linguados/imunologia , Animais , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Doenças dos Peixes/imunologia , Sistemas de Secreção Tipo III/imunologia , Vacinas Atenuadas/imunologia
9.
Mol Plant Pathol ; 21(10): 1377-1388, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32770627

RESUMO

The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.


Assuntos
Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Sistemas de Secreção Tipo III , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas/imunologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/metabolismo
10.
BMC Microbiol ; 20(1): 261, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819301

RESUMO

BACKGROUND: For successful colonization, enterohaemorrhagic Escherichia coli (EHEC) injects virulence factors, called effectors, into target cells through the type three secretion system (T3SS), which is composed of a needle and basal body. Under anaerobic conditions, the T3SS machinery remains immature and does not have a needle structure. However, activation of nitrate respiration enhances the completion of the T3SS machinery. Because nitric oxide released by the host inflammatory response increases nitrate concentration, we sought to determine the effect of the inflammatory response on initiation of EHEC microcolony-formation. RESULTS: The colony-forming capacity was increased in accordance with the increase of nitrate in the medium. The addition of the nitric oxide-producing agent NOR-4 also enhanced the adherence capacity, which was dependent on nitrate reductase encoded by the narGHJI genes. Culture supernatant of epithelial cells, which was stimulated by a cytokine mixture, enhanced the colony-forming capacity of wild-type EHEC but not of the narGHJI mutant. Finally, colony formation by wild-type EHEC on epithelial cells, which were preincubated with heat-killed bacteria, was higher than the narGHJI mutant, and this effect was abolished by aminoguanidine hydrochloride, which is an iNOS (inducible nitric oxide synthase) inhibitor. CONCLUSIONS: These results indicate that the inflammatory response enhances EHEC adherence by increasing nitrate concentration.


Assuntos
Citocinas/metabolismo , Escherichia coli Êntero-Hemorrágica/fisiologia , Mutação , Nitratos/metabolismo , Sistemas de Secreção Tipo III/imunologia , Aderência Bacteriana , Técnicas Bacteriológicas , Células CACO-2 , Escherichia coli Êntero-Hemorrágica/imunologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Óxido Nítrico/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia
11.
Annu Rev Microbiol ; 74: 221-245, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660389

RESUMO

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.


Assuntos
Citosol/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Sistemas de Secreção Tipo III/imunologia , Yersinia/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Citosol/microbiologia , Humanos , Inflamassomos , Piroptose , Transdução de Sinais , Fatores de Virulência/metabolismo , Yersinia/metabolismo , Yersinia/patogenicidade
12.
Fish Shellfish Immunol ; 104: 123-132, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473362

RESUMO

Vibrio alginolyticus, a Gram-negative bacterium, has been recognized as an opportunistic pathogen in marine animals as well as humans. Type III secretion system (T3SS) is critical for pathogen virulence and disease development. However, no more information is known about the C-ring component VscQ and its physiological role. In this study, gene vscQ was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901ΔvscQ was constructed by the in-frame deletion method. The HY9901ΔvscQ mutant showed an attenuated swarming phenotype and a closely 4.6-fold decrease in the virulence to Danio rerio. However, the HY9901ΔvscQ mutant showed no difference in growth, biofilm formation and ECPase activity. HY9901ΔvscQ reduces the release of LDH, NO and caspase-3 activity of infected FHM cell, which are involved in fish cell apoptosis. Deletion of gene vscQ downregulates the expression level of T3SS-related genes including vscL, vopB, hop, vscO, vscK, vopD, vcrV and vopS and flagellum-related genes (flaA and fliG). And Danio rerio vaccinated via i.m injection with HY9901ΔvscQ induced a relative percent survival (RPS) value of 71% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901ΔvscQ enhanced the expression of immune-related genes, including TNF-α, TLR5, IL-6R, IgM and c/ebpß in liver and spleen after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in zebrafish. These results demonstrate that the HY9901ΔvscQ mutant could be used as an effective live vaccine to combat V. alginolyticus infection.


Assuntos
Vacinas Bacterianas/imunologia , Doenças dos Peixes/imunologia , Sistemas de Secreção Tipo III/imunologia , Vibrioses/veterinária , Peixe-Zebra/imunologia , Animais , Genes Bacterianos , Vacinas Atenuadas/imunologia , Vibrioses/imunologia , Vibrio alginolyticus/fisiologia
13.
FEBS Lett ; 594(16): 2598-2620, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32170725

RESUMO

Pathogens that colonize deep tissues and spread systemically encounter the innate host resistance mechanism of complement-mediated lysis and complement opsonization leading to engulfment and degradation by phagocytic cells. Yersinia and Salmonella species have developed numerous strategies to block the antimicrobial effects of complement. These include recruitment of complement regulatory proteins factor H, C4BP, and vitronectin (Vn) as well as interference in late maturation events such as assembly of C9 into the membrane attack complex that leads to bacterial lysis. This review will discuss the contributions of various surface structures (proteins, lipopolysaccharide, and capsules) to evasion of complement-mediated immune clearance of the systemic pathogens Yersiniae and Salmonellae. Bacterial proteins required for recruitment of complement regulatory proteins will be described, including the details of their interaction with host regulatory proteins, where known. The potential role of the surface proteases Pla (Yersinia pestis) and PgtE (Salmonella species) on the activity of complement regulatory proteins will also be addressed. Finally, the implications of complement inactivation on host cell interactions and host cell targeting for type 3 secretion will be discussed.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas do Sistema Complemento/imunologia , Evasão da Resposta Imune , Ativadores de Plasminogênio/imunologia , Salmonella , Sistemas de Secreção Tipo III/imunologia , Yersinia pestis , Animais , Humanos , Salmonella/imunologia , Salmonella/patogenicidade , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade
14.
Curr Top Microbiol Immunol ; 427: 201-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31240408

RESUMO

A broad range of Gram-negative bacteria employ a type III secretion system (T3SS) to deliver virulence proteins termed type III secreted effectors directly into the cytoplasm of eukaryotic host cells. While effectors can contribute to the colonization of eukaryotic hosts by bacterial symbionts and pathogens, they can also elicit host immune responses that restrict bacterial growth. These opposing selective pressures have shaped the evolution of effector families and may be responsible for their incredible diversity in biochemical function, mechanism of action, and taxonomic distribution. In this chapter, we focus on three distinct effector families whose members are distributed among both plant and animal pathogens. We first discuss the LRR-NEL and YopJ families of effectors. These two effector families possess ubiquitin ligase and acetyltransferase activity, respectively, which in both cases can be directed against host innate immune signal transduction pathways to promote infection. Finally, we discuss the TALE family of transcription activator-like effectors that serve to reprogram host immunity transcriptional responses. This chapter aims to highlight the diversity within these three effector families that results from the strong and dynamic evolutionary forces shaping the interface between host and bacterium.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo III/classificação , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias , Bactérias Gram-Negativas/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Sistemas de Secreção Tipo III/imunologia , Fatores de Virulência
15.
Hum Vaccin Immunother ; 15(6): 1317-1325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964713

RESUMO

The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.


Assuntos
Imunidade Adaptativa , Disenteria Bacilar/imunologia , Tolerância Imunológica , Imunidade Inata , Intestinos/imunologia , Shigella/imunologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Humoral , Intestinos/microbiologia , Camundongos , Shigella/patogenicidade , Sistemas de Secreção Tipo III/imunologia , Virulência
16.
Nat Commun ; 10(1): 1826, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015451

RESUMO

The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery (blood in stool) worldwide every year, resulting in more than 200,000 deaths. A major challenge in combating bacillary dysentery is the lack of a small-animal model that recapitulates the symptoms observed in infected individuals, including bloody diarrhea. Here, we show that similar to humans, infant rabbits infected with S. flexneri experience severe inflammation, massive ulceration of the colonic mucosa, and bloody diarrhea. T3SS-dependent invasion of epithelial cells is necessary and sufficient for mediating immune cell infiltration and vascular lesions. However, massive ulceration of the colonic mucosa, bloody diarrhea, and dramatic weight loss are strictly contingent on the ability of the bacteria to spread from cell to cell. The infant rabbit model features bacterial dissemination as a critical determinant of S. flexneri pathogenesis and provides a unique small-animal model for research and development of therapeutic interventions.


Assuntos
Diarreia/patologia , Disenteria Bacilar/patologia , Hemorragia Gastrointestinal/patologia , Shigella flexneri/patogenicidade , Sistemas de Secreção Tipo III/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Colo/microbiologia , Colo/patologia , Diarreia/microbiologia , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Células Epiteliais/microbiologia , Feminino , Hemorragia Gastrointestinal/microbiologia , Células HT29 , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Gravidez , Coelhos
17.
mSphere ; 4(2)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996108

RESUMO

Pseudomonas aeruginosa is a common Gram-negative opportunistic pathogen that is intrinsically resistant to a wide range of antibiotics. The development of a broadly protective vaccine against P. aeruginosa remains a major challenge. Here, we used an attenuated strain of Salmonella enterica serovar Typhimurium as a vehicle to express P. aeruginosa antigens. A fusion between the S. enterica type III secretion effector protein SseJ and the P. aeruginosa antigen PcrV expressed under the control of the sseA promoter was translocated by Salmonella into host cells in vitro and elicited the generation of specific antibodies in mice. Mice immunized with attenuated Salmonella expressing this fusion had reduced bacterial loads in the spleens and lungs and lower serum levels of proinflammatory cytokines than control mice after P. aeruginosa infection. Importantly, immunized mice also showed significantly enhanced survival in this model. These results suggest that type III secretion effectors of S. enterica are appropriate carriers in the design of a live vaccine to prevent infections caused by P. aeruginosaIMPORTANCE The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic pathogen that causes infections in cystic fibrosis and hospitalized patients. Therapeutic treatments are limited due to the emergence and spread of new antibiotic-resistant strains. In this context, the development of a vaccine is a priority. Here, we used an attenuated strain of Salmonella enterica serovar Typhimurium as a vehicle to express and deliver the Pseudomonas antigen PcrV. This vaccine induced the generation of specific antibodies in mice and protected them from lethal infections with P. aeruginosa This is an important step toward the development of an effective vaccine for the prevention of infections caused by P. aeruginosa in humans.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Sistemas de Secreção Tipo III/genética , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Citocinas/sangue , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Baço/microbiologia , Sistemas de Secreção Tipo III/imunologia , Vacinas Atenuadas/administração & dosagem
18.
Immunol Lett ; 215: 35-39, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30771380

RESUMO

Salmonella enterica serovars infect a broad range of mammalian hosts, including humans, causing both gastrointestinal and systemic diseases. Effective immune responses to Salmonella infections depend largely on CD4+ T cell activation by dendritic cells (DCs). Bacteria are internalised by intestinal DCs and respond by translocating effectors of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS) into host cells. In this review, we discuss processes that are hijacked by SPI-2 T3SS effectors and how this affects DC biology and the activation of T cell responses.


Assuntos
Apresentação de Antígeno , Ativação Linfocitária , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Linfócitos T/imunologia , Sistemas de Secreção Tipo III/imunologia , Animais , Humanos , Infecções por Salmonella/patologia , Linfócitos T/patologia
19.
Mol Plant Microbe Interact ; 32(5): 527-539, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30431399

RESUMO

The importance of pattern-triggered immunity (PTI) in plant defense has been clearly established through genetic studies of mutants lacking functional pattern recognition receptors (PRRs) and signaling components downstream of PRR activation. Despite extensive knowledge of PRR-mediated signaling responses to pathogen-associated molecular patterns (PAMPs), little is known about which of these responses, if any, are directly responsible for limiting bacterial growth. In this work, we established a protocol for coculturing the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and Arabidopsis suspension cells. The system closely mirrors infection processes that occur in leaves, with bacteria relying on the type III secretion system (T3SS) for maximal growth and PAMP-induced plant defenses effectively limiting bacterial growth. To demonstrate the utility of this system, we investigated the molecular basis of PAMP-induced growth inhibition and discovered that T3SS-associated genes are inhibited when DC3000 is cocultured with PAMP-treated plant suspension cells. To determine the underlying mechanism of decreased T3SS gene expression, we performed metabolomics and biochemical analyses of suspension cell exudates and identified 14 metabolites that significantly increased or decreased following PAMP treatment. Citric acid, a known inducer of T3SS gene expression in DC3000, was among several organic acids decreased in exudates from PAMP-treated plant cells. Exogenous addition of citric acid increased T3SS gene expression and partially recovered growth of DC3000 in the presence of PAMP-treated cells, indicating that a portion of PAMP-induced defense in this system is decreased extracellular release of this metabolite. We envision that the well-defined infection conditions of this coculture system will be valuable for quantitative studies of type III effector delivery by P. syringae. Furthermore, this system provides a unique 'top-down' approach to unravel the molecular basis of PTI against P. syringae.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Bacteriológicas , Interações Hospedeiro-Patógeno , Pseudomonas syringae , Sistemas de Secreção Tipo III , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Receptores de Reconhecimento de Padrão/genética , Sistemas de Secreção Tipo III/imunologia
20.
Microbiol Immunol ; 62(12): 774-785, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30378708

RESUMO

An effective vaccine against Pseudomonas aeruginosa would be hugely beneficial to people who are susceptible to the serious infections it can cause. Vaccination against PcrV of the P. aeruginosa type III secretion system is a potential prophylactic strategy for improving the incidence and prognosis of P. aeruginosa pneumonia. Here, the effect of nasal PcrV adjuvanted with CpG oligodeoxynucleotide (CpG) was compared with a nasal PcrV/aluminum hydroxide gel (alum) vaccine. Seven groups of mice were vaccinated intranasally with one of the following: 1, PcrV-CpG; 2, PcrV-alum; 3, PcrV alone; 4, CpG alone; 5, alum alone; 6 and 7, saline control. Fifty days after the first immunization, anti-PcrV IgG, IgA and IgG isotype titers were measured; significant increases in these titers were detected only in the PcrV-CpG vaccinated mice. The vaccinated mice were then intratracheally infected with a lethal dose of P. aeruginosa and their body temperatures and survival monitored for 24 hr, edema, bacteria, myeloperoxidase activity and lung histology also being evaluated at 24 hr post-infection. It was found that 73% of the PcrV-CpG-vaccinated mice survived, whereas fewer than 30% of the mice vaccinated with PcrV-alum or adjuvant alone survived. Lung edema and other inflammation-related variables were less severe in the PcrV-CpG group. The significant increase in PcrV-specific IgA titers detected following PcrV-CpG vaccination is probably a component of the disease protection mechanism. Overall, our data show that intranasal PcrV-CpG vaccination has potential efficacy for clinical application against P. aeruginosa pneumonia.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Pneumonia/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Vacinação , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Temperatura Corporal , Modelos Animais de Doenças , Edema , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Oligodesoxirribonucleotídeos/genética , Peroxidase/análise , Proteínas Citotóxicas Formadoras de Poros/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Vacinas contra Pseudomonas/administração & dosagem , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Taxa de Sobrevida , Sistemas de Secreção Tipo III/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...