Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 115(3): 436-452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326642

RESUMO

Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.


Assuntos
Conjugação Genética , Fímbrias Bacterianas/fisiologia , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/fisiologia , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/fisiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Microscopia Crioeletrônica , Bactérias Gram-Negativas/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Helicobacter pylori/química , Helicobacter pylori/fisiologia , Humanos , Legionella pneumophila/química , Legionella pneumophila/fisiologia , Simulação de Acoplamento Molecular , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/ultraestrutura , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/ultraestrutura
2.
Nat Commun ; 10(1): 5263, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748551

RESUMO

Tc toxins are bacterial protein complexes that inject cytotoxic enzymes into target cells using a syringe-like mechanism. Tc toxins are composed of a membrane translocator and a cocoon that encapsulates a toxic enzyme. The toxic enzyme varies between Tc toxins from different species and is not conserved. Here, we investigate whether the toxic enzyme can be replaced by other small proteins of different origin and properties, namely Cdc42, herpes simplex virus ICP47, Arabidopsis thaliana iLOV, Escherichia coli DHFR, Ras-binding domain of CRAF kinase, and TEV protease. Using a combination of electron microscopy, X-ray crystallography and in vitro translocation assays, we demonstrate that it is possible to turn Tc toxins into customizable molecular syringes for delivering proteins of interest across membranes. We also infer the guidelines that protein cargos must obey in terms of size, charge, and fold in order to apply Tc toxins as a universal protein translocation system.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Photorhabdus/química , Photorhabdus/metabolismo , Sistemas de Translocação de Proteínas/química , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
Protein J ; 38(3): 236-248, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31187382

RESUMO

The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.


Assuntos
Chaperonas Moleculares/fisiologia , Sinais Direcionadores de Proteínas , Sistemas de Translocação de Proteínas , Proteínas/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/fisiologia , Transporte Proteico , Canais de Translocação SEC/química , Leveduras/metabolismo
4.
Protein J ; 38(3): 229-235, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31144202

RESUMO

To identify the translocation components in cells, and to understand how they function in protein transport and membrane insertion, a variety of techniques have been used such as genetics, biochemistry, structural biology and single molecule methods. In particular, site-directed crosslinking between the client proteins and components of the translocation machineries have contributed significantly in the past and will do so in the future. One advantage of this technology is that it can be applied in vivo as well as in vitro and a comparison of the two approaches can be made. Also, the in vivo techniques allow time-dependent protocols which are essential for studying cellular pathways. Protein purification and reconstitution into proteoliposomes are the gold standard for studying membrane-based transport and translocation systems. With these biochemically defined approaches the function of each component in protein transport can be addressed individually with a plethora of biophysical techniques. Recently, the use of nanodiscs for reconstitution has added another extension of this reductionistic approach. Fluorescence based studies, cryo-microscopy and NMR spectroscopy have significantly added to our understanding how proteins move into and across membranes and will do this also in future.


Assuntos
Sistemas de Translocação de Proteínas/química , Transporte Proteico , Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Eucariotos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Fluorescência/métodos , Proteolipídeos/metabolismo , Imagem Individual de Molécula/métodos
5.
Biochemistry (Mosc) ; 83(Suppl 1): S176-S189, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29544439

RESUMO

Microtubules are components of eukaryotic cytoskeleton that are involved in the transport of various components from the nucleus to the cell periphery and back. They also act as a platform for assembly of complex molecular ensembles. Ribonucleoprotein (RNP) complexes, such as ribosomes and mRNPs, are transported over significant distances (e.g. to neuronal processes) along microtubules. The association of RNPs with microtubules and their transport along these structures are essential for compartmentalization of protein biosynthesis in cells. Microtubules greatly facilitate assembly of stress RNP granules formed by accumulation of translation machinery components during cell stress response. Microtubules are necessary for the cytoplasm-to-nucleus transport of proteins, including ribosomal proteins. At the same time, ribosomal proteins and RNA-binding proteins can influence cell mobility and cytoplasm organization by regulating microtubule dynamics. The molecular mechanisms underlying the association between the translation machinery components and microtubules have not been studied systematically; the results of such studies are mostly fragmentary. In this review, we attempt to fill this gap by summarizing and discussing the data on protein and RNA components of the translation machinery that directly interact with microtubules or microtubule motor proteins.


Assuntos
Microtúbulos/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Animais , Microtúbulos/química , Sistemas de Translocação de Proteínas/química
6.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084860

RESUMO

The ß-barrel assembly machinery (BAM) complex is the core machinery for the assembly of ß-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long ß-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive ß-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli Enteropatogênica/química , Secretina/química , Sistemas de Secreção Tipo II/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Microscopia Eletrônica/métodos , Modelos Moleculares , Polissacarídeo-Liases/metabolismo , Ligação Proteica , Conformação Proteica , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Secretina/genética , Secretina/isolamento & purificação , Sistemas de Secreção Tipo II/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
7.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
8.
Sci Rep ; 7(1): 1284, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455498

RESUMO

Src homology domain containing leukocyte protein of 65 kDa (SLP65), the growth factor receptor binding protein 2 (Grb2), and the guanine nucleotide exchange factor for the Rho family GTPases (Vav), self associate in unstimulated B cells as components of the preformed B cell receptor transducer module, in an SH3-dependent manner. The complex enables the B cell to promptly respond to BCR aggregation, resulting in signal amplification. It also facilitates Vav translocation to the membrane rafts, for activation. Here we uncover the molecular mechanism by which the complex may be formed in the B cell. The C-terminal SH3 domain (SH3C) of Grb2 bivalently interacts with the atypical non-PxxP proline rich region of SLP65, and the N-terminal SH3 domain (SH3N) of Vav, both the interactions crucial for the proper functioning of the B cell. Most surprisingly, the two ligands bind the same ligand binding site on the surface of Grb2 SH3C. Addition of SLP65 peptide to the Grb2-Vav complex abrogates the interaction completely, displacing Vav. However, the addition of Vav SH3N to the SLP65-Grb2 binary complex, results in a trimeric complex. Extrapolating these results to the in vivo conditions, Grb2 should bind the SLP65 transducer module first, and then Vav should associate.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteína Adaptadora GRB2/química , Proteínas Proto-Oncogênicas c-vav/química , Domínios de Homologia de src , Animais , Ligantes , Camundongos , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Sistemas de Translocação de Proteínas/química
9.
Sci Rep ; 7(1): 101, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273911

RESUMO

The heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation. In the presence of a substrate, YidC relocates to the rim of the pore as indicated by increased pore diameter and loss of YidC crosslinks to the channel interior. Changing the surface charge of the pore by incorporating YidC into the channel wall increases the anion selectivity, and the accompanying change in wall hydrophobicity is liable to alter the partition of helices from the pore into the membrane. This could explain how the exit of transmembrane domains from the SecY channel is facilitated by YidC.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/metabolismo
10.
PLoS Comput Biol ; 13(3): e1005427, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28328943

RESUMO

We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 µs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/ultraestrutura , Canais de Translocação SEC/química , Canais de Translocação SEC/ultraestrutura , Sítios de Ligação , Membrana Celular/química , Membrana Celular/ultraestrutura , Modelos Químicos , Movimento (Física) , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Ribossomos/química , Ribossomos/ultraestrutura
11.
J Mol Biol ; 429(5): 753-762, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28115202

RESUMO

In order for many proteins to move across hydrophobic membrane bilayers, they must be unfolded and translocated by a membrane-embedded channel. These translocase channels interact with the substrate proteins they translocate via hydrophobic pore loops and cleft structures called clamps. The molecular basis for how clamps facilitate unfolding and translocation is poorly understood. Anthrax toxin is composed of three proteins, a translocase channel-forming subunit, called protective antigen (PA), and two substrate proteins, called lethal factor (LF) and edema factor. Oligomeric PA forms a large channel that contains three types of polypeptide clamp sites: an α clamp, a phenylalanine clamp, and a charge clamp. Currently, it is thought that these clamp sites operate allosterically and promote translocation via an allosteric helix compression mechanism. Here, we report on the substrate secondary structure dependence of the PA channel. Peptides derived from regions of LF with high α-helical content bound cooperatively, but those derived from ß-sheet regions in LF did not, suggesting that an allosteric site preferentially recognizes α-helical structure over ß-sheet structure. Peptides derived from helical sites in LF showed increasingly longer single-channel blockades as a function of peptide concentration, a result that was consistent with stronger clamping behavior and reduced backsliding. Moreover, peptides derived from helical regions of LF translocated more efficiently than peptides derived from ß-sheet regions of LF. Overall, in support of the allosteric helix compression model, we find that the channel prefers α-helical sequences over ß-sheet sequences.


Assuntos
Antígenos de Bactérias/química , Bacillus anthracis/química , Toxinas Bacterianas/química , Canais Iônicos/química , Sistemas de Translocação de Proteínas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...