Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 54(7): 525-534, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32873097

RESUMO

Slc7a11 (xCT) and Slc3a1 (rBAT) are cystine uptake transporters that maintain intracellular concentrations of cysteine, the rate-limiting amino acid in glutathione synthesis. This study was conducted to first determine the tissue distribution of the two transporters in male and female mice. Because Slc3a1 was the primary cystine transporter in liver, its sex-divergent expression, ontogeny, diurnal rhythm and whether its mRNA expression is altered by transcription factors (AhR, CAR, PXR, PPARα, and Nrf2) was also investigated. Slc7a11 was expressed highest in brain and gonads. Slc3a1 was expressed highest in kidney and intestine, followed by liver. Duodenal and hepatic Slc3a1 was higher in females than males. Hepatic Slc3a1 was high during darkness and low during daytime. Hepatic Scl3a1 was lowest pre-birth, increased to near maximal levels at birth, decreased back to pre-birth levels between Days 3-10, and then returned to peak levels by Day 45. Except for CAR, activation of transcription factors did not increase hepatic mRNA expression of Slc3a1. Chemical activation of CAR significantly induced Slc3a1 1.4-fold in wild-type but not CAR-null mice. Slc3a1 mRNA was higher in livers of AhR- and Nrf2-null mice compared to wild-type mice. High doses of diquat but not acetaminophen induced Slc3a1, suggesting Slc3a1 may respond to oxidative stress but not necessarily to GSH depletion. Overall, Slc7a11 is mainly expressed in brain and gonads, whereas Slc3a1 is mainly expressed in kidney, small intestine and liver, and its hepatic expression is regulated by diurnal rhythm and certain xenobiotic treatments.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/biossíntese , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
2.
Mol Cell Biochem ; 419(1-2): 147-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27357826

RESUMO

Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Arginina/análogos & derivados , Colina , Fígado Gorduroso/sangue , Regulação da Expressão Gênica , Metionina/deficiência , Animais , Arginina/sangue , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
3.
Amino Acids ; 48(6): 1491-508, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984322

RESUMO

Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Neutros/biossíntese , Ração Animal , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Peptidil Dipeptidase A/biossíntese , Enzima de Conversão de Angiotensina 2 , Animais , Feminino , Masculino , Suínos
4.
J Immunol ; 195(11): 5237-50, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491198

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Transportador 2 de Aminoácidos Catiônicos/biossíntese , Células Mieloides/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Animais , Arginase/biossíntese , Arginina/metabolismo , Transporte Biológico , Transportador 2 de Aminoácidos Catiônicos/genética , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
Am J Physiol Renal Physiol ; 307(4): F418-26, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24966085

RESUMO

Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10(-9)-10(-5) M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P < 0.05) and reduced maximal response (Emax; 59.9 ± 9.67 vs. 94.31 ± 1.27%, P < 0.05). AUC was not improved by ARG treatment but was significantly improved above SED animals in both RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[(3)H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine.


Assuntos
Arginina/metabolismo , Endotélio Vascular/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Corrida , Acetilcolina/farmacologia , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
6.
J Cell Sci ; 126(Pt 17): 3972-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813957

RESUMO

Rheb GTPase and the Tsc1-Tsc2 protein complex, which serves as a GTPase-activating protein for Rheb, have crucial roles in the regulation of cell growth in response to extracellular conditions. In Schizosaccharomyces pombe, Rheb and Tsc1-Tsc2 regulate cell cycle progression, the onset of meiosis and the uptake of amino acids. In cells lacking Tsc2 (Δtsc2), the amino acid transporter Aat1, which is normally expressed on the plasma membrane under starvation conditions, is confined to the Golgi. Here, we show that the loss of either pub1(+), encoding an E3 ubiquitin ligase, or any1(+), encoding a ß-arrestin-like protein, allows constitutive expression of Aat1 on the plasma membrane in Δtsc2 cells, suggesting that Pub1 and Any1 are required for localization of Aat1 to the Golgi. Subsequent analysis revealed that, in the Golgi, Pub1 and Any1 form a complex that ubiquitylates Aat1. Physical interaction of Pub1 and Any1 is more stable in Δtsc2 cells than in wild-type cells and is independent of Tor2 activity. These results indicate that the TSC-Rheb signaling pathway regulates the localization of amino acid transporters via Pub1 and Any1 in a Tor2-independent manner. Our study demonstrates that, unlike in budding yeast (in which Rsp5 and ARTs, a pair of proteins analogous to Pub1 and Any1, respectively, primarily act to reduce expression of the transporters on plasma membrane when nutrients are abundant), the primary role of fission yeast Pub1 and Any1 is to store the transporter in the Golgi under nutrient-rich conditions.


Assuntos
Arrestinas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arrestinas/deficiência , Arrestinas/genética , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/genética , Ciclo Celular , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Meiose , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , beta-Arrestinas
7.
J Bacteriol ; 194(20): 5657-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904281

RESUMO

The protein-gene pairs ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum are orthologous, with the first member of each pair being a LysR-type transcriptional regulator and the second its target gene encoding a basic amino acid exporter. Whereas LysE is an exporter of arginine (Arg) and lysine (Lys) whose expression is induced by Arg, Lys, or histidine (His), ArgO exports Arg alone, and its expression is activated by Arg but not Lys or His. We have now reconstituted in E. coli the activation of lysE by LysG in the presence of its coeffectors and have shown that neither ArgP nor LysG can regulate expression of the noncognate orthologous target. Of several ArgP-dominant (ArgP(d)) variants that confer elevated Arg-independent argO expression, some (ArgP(d)-P274S, -S94L, and, to a lesser extent, -P108S) activated lysE expression in E. coli. However, the individual activating effects of LysG and ArgP(d) on lysE were mutually extinguished when both proteins were coexpressed in Arg- or His-supplemented cultures. In comparison with native ArgP, the active ArgP(d) variants exhibited higher affinity of binding to the lysE regulatory region and less DNA bending at both argO and lysE. We conclude that the transcription factor LysG from a Gram-positive bacterium, C. glutamicum, is able to engage appropriately with the RNA polymerase from a Gram-negative bacterium, E. coli, for activation of its cognate target lysE in vivo and that single-amino-acid-substitution variants of ArgP can also activate the distantly orthologous target lysE, but by a subtly different mechanism that renders them noninterchangeable with LysG.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos/biossíntese , Proteínas de Bactérias/biossíntese , Corynebacterium glutamicum/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Proteínas Periplásmicas de Ligação/biossíntese , Transcrição Gênica , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Proteínas Periplásmicas de Ligação/genética , Recombinação Genética , Ativação Transcricional
8.
Clin Exp Pharmacol Physiol ; 38(12): 796-803, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21923750

RESUMO

1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/biossíntese , Endotélio Vascular/metabolismo , Pulmão/irrigação sanguínea , Óxido Nítrico/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Arginina/metabolismo , Linhagem Celular , Endotélio Vascular/citologia , Humanos , Hipóxia/metabolismo , Microvasos/citologia , Microvasos/metabolismo
9.
J Bacteriol ; 193(10): 2536-48, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441513

RESUMO

Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 µM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His(6) bound to the lysP promoter/control region at a sequence containing a conserved T-N(11)-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , Transcrição Gênica , DNA Bacteriano/metabolismo , Escherichia coli/genética , Lisina/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Regiões Promotoras Genéticas , Ligação Proteica
10.
J Anim Sci ; 88(3): 1028-33, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933436

RESUMO

To test the hypothesis that AA transporter transcripts are present in the large intestine and similarly expressed along the intestinal tract, mRNA abundance of candidate AA transporter genes solute carrier (SLC) family 7, member 9 (SLC7A9), SLC7A1, SLC7A8, and SLC43A1 encoding for b(0,+)-type AA transporter (b(0,+)AT), cationic AA transporter-1 (CAT-1), L-type AA transporter-2 (LAT-2), and L-type AA transporter-3 (LAT-3), respectively, was determined in small and large intestinal segments of the horse. Mucosa was collected from the equine small (jejunum and ileum) and large intestine (cecum, left ventral colon, and left dorsal colon), flash frozen in liquid nitrogen, and stored at -80 degrees C. Messenger RNA was isolated from tissue samples, followed by manufacture of cDNA. Relative quantitative reverse transcription-PCR was conducted using the 2(-DeltaDeltaCT) method, with glyceraldehyde-3-phosphate dehydrogenase serving as the housekeeping gene. Compared with the jejunum, cationic and neutral AA transporter SLC7A9 mRNA abundance was similar in the ileum, cecum, and large intestinal segments. Compared with the jejunum, cationic AA transporter SLC7A1 mRNA abundance was similar in the ileum and decreased in the cecum, left ventral colon, and left dorsal colon (P < 0.001). Neutral AA transporter SLC7A8 mRNA abundance decreased from the cranial to caudal end of the intestinal tract (P < 0.001). Neutral AA transporter SLC43A1 mRNA abundance was similar in the ileum and left dorsal colon and increased in the cecum (P < 0.01) and left ventral colon (P < 0.1) compared with the jejunum. Cationic and neutral AA transporter SLC7A9 mRNA abundance was similarly expressed in the large compared with small intestine, whereas cationic AA transporter SLC7A1 was of low abundance in the large intestine; neutral AA transporters SLC7A8 and SLC43A1 were differentially expressed with decreased abundance of SLC7A8 and increased abundance of SLC43A1 in the large intestine. Results indicate that the large intestine might contribute to both cationic and neutral AA uptake and absorption predominantly via transporters LAT-3 and b(0,+)AT.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/análise , Sistemas de Transporte de Aminoácidos Neutros/análise , Cavalos/metabolismo , Intestinos/química , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Neutros/biossíntese , Animais , Transportador 1 de Aminoácidos Catiônicos/análise , Transportador 1 de Aminoácidos Catiônicos/biossíntese , Ceco/química , Ceco/metabolismo , Colo/química , Colo/metabolismo , Cavalos/fisiologia , Íleo/química , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/química , Jejuno/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Mol Microbiol ; 74(6): 1513-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19906180

RESUMO

In vivo and in vitro analyses indicate that transcription of the argO gene coding for an arginine exporter is regulated by the global transcriptional regulator Lrp, an effect that went by unnoticed in previous genome-scale screenings of the Lrp regulatory network in Escherichia coli. Lrp activates the argO promoter fourfold; exogenous leucine antagonizes, but does not completely eliminate this effect. Activation by Lrp interferes with the previously demonstrated activation of the argO promoter by ArgP. This interference results from the mutual inhibitory binding of the two activators to overlapping targets. As a consequence, each regulator acts more potently in the absence of the other. Dimeric Lrp binds cooperatively to at least three regularly spaced semi-palindromic binding sites. Leucine reduces complex formation approximately twofold but concomitantly enhances the cooperativity of the binding. Footprinting data suggest a severe Lrp-induced deformation of the argO control region. Combined, the effector modulated activation of argO transcription by ArgP and Lrp must ensure an adapted and fine-tuned synthesis of the transporter in response to environmental conditions. The repertoire of bacterial transcription regulation mechanisms is vast, but the competitive activation of a single promoter by two activator proteins as described here appears to be rare.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/fisiologia , Arginina/metabolismo , Fusão Gênica Artificial , Sequência de Bases , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Acta Anaesthesiol Scand ; 50(5): 604-12, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643232

RESUMO

BACKGROUND: Platonin, a cyanine photosensitizing dye, is a potent immunomodulator that suppresses acute inflammation. Platonin not only inhibits interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha production but also improves circulatory failure in septic rats. In addition, platonin reduces plasma nitric oxide (NO) formation during sepsis. However, the effects of platonin on inducible NO synthase (iNOS) and cationic amino-acid transporter (including CAT-2, CAT-2 A, and CAT-2B) expressions during sepsis remain uninvestigated. METHODS: Five groups of confluent murine macrophages (RAW264.7 cells) were randomly allocated to receive a 1-h pretreatment of one of five doses of platonin (0.1 microM, 1 microM, 10 microM, 100 microM, or 1000 microM) followed by lipopolysaccharide (LPS; 100 ng ml(-1)). For negative, positive, and platonin control, three other groups of cell cultures were randomly allocated to receive phosphate-buffered saline, LPS, or platonin (1000 microM). The cultures were harvested after exposing them to LPS for 18 h or a comparable duration in those groups without LPS. NO production, L-arginine transport, and expression of the relevant enzymes were then evaluated. RESULTS: Platonin significantly attenuated LPS-induced up-regulation of iNOS expression and NO production in stimulated murine macrophages in a dose-dependent manner. Platonin also significantly inhibited up-regulation of CAT-2 and CAT-2B expression as well as L-arginine transport in LPS-stimulated murine macrophages in a dose-dependent manner. In contrast, CAT-2 A expression in murine macrophages was not affected by LPS and/or platonin. CONCLUSIONS: Platonin attenuates NO production and L-arginine transport in LPS-stimulated murine macrophages possibly through inhibiting iNOS, CAT-2, and CAT-2B expression.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/metabolismo , Tiazóis/farmacologia , Animais , Arginina/metabolismo , Linhagem Celular , Densitometria , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Medições Luminescentes , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estimulação Química , Regulação para Cima/efeitos dos fármacos
13.
Neurochem Int ; 48(6-7): 547-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16513216

RESUMO

The system N glutamine (Gln) transporter SN1(SNAT3) is overexpressed in human malignant glioma cells in situ as compared to the adjacent brain tissue or metastases from different organs [Sidoryk, M., Matyja, E., Dybel, A., Zielinska, M., Bogucki, J., Jaskólski, D.J., Liberski, P.P., Kowalczyk, P., Albrecht, J., 2004]. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. NeuroReport 15, 575-578], but its role in tumor growth as compared to the other Gln transporters is unknown. One of the profound, growth-promoting effects of glial tumor in situ is acidification of the extracellular space. In the kidney SN1(SNAT3) mRNA participates in the adaptation to acidosis. In this study therefore, expression of mRNAs coding for SN1(SNAT3) and other Gln transporters was measured in human (T98G) and rat (C6) glioma cells incubated for 4h in an acidic medium (AI) (pH 6.5). MTT assay revealed no cell loss in AI cells, and intracellular pH (pHi) as measured by a fluorescent probe (BCECF-AM) was slightly alkaline in C6 and T98G cells, indicating that the cells have adapted to AI. AI significantly decreased the SN1(SNAT3) mRNA expression in C6 (a 60% decrease) and T98G cells (a 50% decrease). The decrease retreated in C6 cells 4h after transferring them back to the neutral medium. The expression of ASCT2 mRNA (system ASC), ATA1 mRNA (system A) and SN2(SNAT5) mRNA (system N) were not affected by AI in either of the cell lines. [(3)H]Gln uptake in C6 or T98G cells grown in neutral medium was mainly mediated by system ASCT2: system N contributed to only approximately 7% of the uptake. AI did not affect the total Gln uptake, and only slightly decreased the system N-mediated component of the uptake. Hence, SN1(SNAT3) does not seem to be involved in the adaptation of cultured glioma cells to acidic millieu.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/biossíntese , Biomarcadores Tumorais/biossíntese , RNA Mensageiro/biossíntese , Sistema A de Transporte de Aminoácidos/biossíntese , Sistema A de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Cultura , Glioma , Glutamina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Líquido Intracelular/metabolismo , Antígenos de Histocompatibilidade Menor , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Artigo em Inglês | MEDLINE | ID: mdl-16406639

RESUMO

The effect of a lysine-deficient diet on cationic amino acid transporter (CAT1-3) mRNA expression was determined in broiler chickens. Chicks consumed a lysine-adequate (LA; 1.3% lysine) or lysine-deficient (LD; 0.7% lysine) diet. Pair-fed chicks consumed the LA diet in an amount equal to that consumed by LD chicks during the previous day (PLA). CAT 1-3 mRNA expression in the liver, pectoralis and bursa of LD chicks were lower than that of LA and PLA chicks (P<0.05), and levels were not detectable in LD chick thymus. High affinity CAT mRNA expression in isolated bursacytes was 16-fold higher in LD chicks than that of LA chicks (P<0.001). Thymocyte high affinity CAT mRNA expression was 5-fold lower than that of LA chicks (P<0.05). The summed amount of high affinity CAT-1 and CAT-3 mRNA expression in chicks fed a lysine adequate diet was highly correlated (r2=0.51; P<0.001) to a tissue's growth during a lysine deficiency or feed restriction. In the thymus and bursa of LD chicks, CAT mRNA levels differed between resident lymphocytes and their surrounding tissues. By expressing high affinity CAT isoforms, developing lymphocytes may have a greater ability to obtain lysine than their surrounding tissue during a lysine deficiency.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Lisina/deficiência , Lisina/farmacologia , Actinas/metabolismo , Aminoácidos/metabolismo , Aminoácidos Essenciais , Ração Animal , Animais , Galinhas , Cloranfenicol O-Acetiltransferase/metabolismo , Corticosterona/sangue , Primers do DNA/química , Expressão Gênica , Linfócitos/metabolismo , Lisina/química , Masculino , Necessidades Nutricionais , Reação em Cadeia da Polimerase , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timo/citologia , Timo/metabolismo
15.
Hum Mutat ; 20(5): 375-81, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12402335

RESUMO

Two distinct human light subunits of the heteromeric amino acid transporter, y+LAT-1 coded by SLC7A7 and y+LAT-2 coded by SLC7A6, are both known to induce transport system y+L activity. SLC7A7 has already been identified as the gene responsible for lysinuric protein intolerance (LPI). We successfully identified five novel SLC7A7 variants (S238F, S489P, 1630delC, 1673delG, and IVS3-IVS5del9.7kb) in Japanese patients with LPI by PCR amplification and direct DNA sequencing. In addition, we performed a semi-quantitative expression analysis of SLC7A7 and SLC7A6 in human tissue. In normal tissue, the gene-expression ratio of SLC7A6 to SLC7A7 was high in the brain, muscle, and cultured skin fibroblasts; low in the kidneys and small intestine; and at an intermediate level in peripheral blood leukocytes, the lungs, and cultured lymphoblasts. The gene-expression ratio of SLC7A6 to SLC7A7 in cultured lymphoblasts was significantly different between normal subjects and LPI patients with R410X and/or S238F, where the relative amount of SLC7A7 mRNA was significantly lower and the relative amount of SLC7A6 mRNA was statistically higher in affected lymphoblasts than in normal cells. Expression of SLC7A7 and SLC7A6 may thus be interrelated in cultured lymphoblasts.


Assuntos
Transtornos Congênitos do Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/biossíntese , Cadeias Leves da Proteína-1 Reguladora de Fusão/biossíntese , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Mutação , Adolescente , Transtornos Congênitos do Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/genética , Sequência de Bases , Transportador 1 de Aminoácidos Catiônicos/biossíntese , Transportador 1 de Aminoácidos Catiônicos/genética , Células Cultivadas , Criança , Análise Mutacional de DNA , Feminino , Variação Genética , Humanos , Japão , Ativação Linfocitária , Linfócitos/metabolismo , Masculino , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...