Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Cell Rep ; 43(4): 113995, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527061

RESUMO

The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-µM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.


Assuntos
Fator 4 Ativador da Transcrição , Arginina , Linfócitos T CD4-Positivos , Arginina/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Feminino , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética
2.
J Neuroinflammation ; 21(1): 59, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419038

RESUMO

We previously identified solute carrier family 7 member 2 (SLC7A2) as one of the top upregulated genes when normal Huntingtin was deleted. SLC7A2 has a high affinity for L-arginine. Arginine is implicated in inflammatory responses, and SLC7A2 is an important regulator of innate and adaptive immunity in macrophages. Although neuroinflammation is clearly demonstrated in animal models and patients with Huntington's disease (HD), the question of whether neuroinflammation actively participates in HD pathogenesis is a topic of ongoing research and debate. Here, we studied the role of SLC7A2 in mediating the neuroinflammatory stress response in HD cells. RNA sequencing (RNA-seq), quantitative RT-PCR and data mining of publicly available RNA-seq datasets of human patients were performed to assess the levels of SLC7A2 mRNA in different HD cellular models and patients. Biochemical studies were then conducted on cell lines and primary mouse astrocytes to investigate arginine metabolism and nitrosative stress in response to neuroinflammation. The CRISPR-Cas9 system was used to knock out SLC7A2 in STHdhQ7 and Q111 cells to investigate its role in mediating the neuroinflammatory response. Live-cell imaging was used to measure mitochondrial dynamics. Finally, exploratory studies were performed using the Enroll-HD periodic human patient dataset to analyze the effect of arginine supplements on HD progression. We found that SLC7A2 is selectively upregulated in HD cellular models and patients. HD cells exhibit an overactive response to neuroinflammatory challenges, as demonstrated by abnormally high iNOS induction and NO production, leading to increased protein nitrosylation. Depleting extracellular Arg or knocking out SLC7A2 blocked iNOS induction and NO production in STHdhQ111 cells. We further examined the functional impact of protein nitrosylation on a well-documented protein target, DRP-1, and found that more mitochondria were fragmented in challenged STHdhQ111 cells. Last, analysis of Enroll-HD datasets suggested that HD patients taking arginine supplements progressed more rapidly than others. Our data suggest a novel pathway that links arginine uptake to nitrosative stress via upregulation of SLC7A2 in the pathogenesis and progression of HD. This further implies that arginine supplements may potentially pose a greater risk to HD patients.


Assuntos
Doença de Huntington , Estresse Nitrosativo , Animais , Humanos , Camundongos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina , Linhagem Celular , Doença de Huntington/genética , Inflamação , Doenças Neuroinflamatórias
3.
Anim Sci J ; 94(1): e13861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551564

RESUMO

We investigated the effects of a low-protein diet and feed restriction on the mRNA expression of cationic amino acid transporters (CATs) in the longissimus dorsi (LD), rhomboideus (RH), and biceps femoris (BF) muscles of pigs. Eighteen piglets were divided into three groups: a control (CP21%), low-protein diet (LP, CP16%), and feed-restricted diet (FR, CP21%, 76% feed intake of control pigs) groups. The expression levels of CAT-1 in the LD and BF muscles of LP pigs were higher than that of control pigs, whereas that of FR pigs showed no difference. The CAT-2A expression levels in the RH muscle of FR pigs were higher than that of control pigs. The free lysine concentrations in all muscles of LP and FR pigs were lower than that of control pigs. To examine the factors that affect CATs mRNA expression, we evaluated the effects of lysine, arginine, insulin-like growth factor-I, and dexamethasone on the expression of CATs in C2C12 myotubes. CAT-1 expression levels increased in lysine and/or arginine deprivation. We show that CAT-1 and CAT-2A expression levels in skeletal muscles differ in response to dietary treatments and CAT-1 expression in skeletal muscles appears to increase in response to low free lysine concentrations.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Lisina , Suínos/genética , Animais , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Lisina/metabolismo , Dieta com Restrição de Proteínas/veterinária , Dieta/veterinária , Arginina/metabolismo , Arginina/farmacologia , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ração Animal/análise
4.
Amino Acids ; 55(10): 1213-1222, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572157

RESUMO

Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Neoplasias , Animais , Humanos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Aminoácidos/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Transporte Biológico , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Mamíferos/metabolismo , Microambiente Tumoral
5.
Haematologica ; 108(8): 2029-2043, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861414

RESUMO

RNA-binding proteins (RBP) have emerged as essential regulators that control gene expression and modulate multiple cancer traits. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from transformation of T-cell progenitors that normally undergo discrete steps of differentiation in the thymus. The implications of essential RBP during T-cell neoplastic transformation remain largely unclear. Systematic evaluation of RBP identifies RNA helicase DHX15, which facilitates the disassembly of the spliceosome and release of lariat introns, as a T-ALL dependency factor. Functional analysis using multiple murine T-ALL models demonstrates the essential importance of DHX15 in tumor cell survival and leukemogenesis. Moreover, single-cell transcriptomics reveals that DHX15 depletion in T-cell progenitors hinders burst proliferation during the transition from doublenegative to double-positive cells (CD4-CD8- to CD4+CD8+). Mechanistically, abrogation of DHX15 perturbs RNA splicing and leads to diminished levels of SLC7A6 and SLC38A5 transcripts due to intron retention, thereby suppressing glutamine import and mTORC1 activity. We further propose a DHX15 signature modulator drug ciclopirox and demonstrate that it has prominent anti-T-ALL efficacy. Collectively, our data highlight the functional contribution of DHX15 to leukemogenesis through regulation of established oncogenic pathways. These findings also suggest a promising therapeutic approach, i.e., splicing perturbation by targeting spliceosome disassembly, may achieve considerable anti-tumor efficacy.


Assuntos
Leucemia , RNA Helicases , Humanos , Animais , Camundongos , RNA Helicases/genética , RNA Helicases/metabolismo , Splicing de RNA , Spliceossomos/genética , Leucemia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo
6.
J Biomol Struct Dyn ; 41(23): 13580-13594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762692

RESUMO

Metabolic and signaling mechanisms in mammalian cells are facilitated by the transportation of L-arginine (Arg) across the plasma membrane through cationic amino acid transporter (CAT) proteins. Due to a lack of argininosuccinate synthase (ASS) activity in various tumor cells such as acute myeloid leukemia, acute lymphocytic leukemia, and chronic lymphocytic leukemia, these tumor entities are arginine-auxotrophic and therefore depend on the uptake of the amino acid arginine. Cationic amino acid transporter-1 (CAT-1) is the leading arginine importer expressed in the aforementioned tumor entities. Hence, in the present study, to investigate the transportation mechanism of arginine in CAT-1, we performed molecular dynamics (MD) simulation methods on the modeled human CAT-1. The MM-PBSA approach was conducted to determine the critical residues interacting with arginine within the corresponding binding site of CAT-1. In addition, we found out that the water molecules have the leading role in forming the transportation channel within CAT-1. The conductive structure of CAT-1 was formed only when the water molecules were continuously distributed across the channel. Steered molecular dynamics (SMD) simulation approach showed various energy barriers against arginine transportation through CAT-1, especially while crossing the bottlenecks of the related channel. These findings at the molecular level might shed light on identifying the crucial amino acids in the binding of arginine to eukaryotic CATs and also provide fundamental insights into the arginine transportation mechanisms through CAT-1. Understanding the transportation mechanism of arginine is essential to developing CAT-1 blockers, which can be potential medications for some types of cancers.Communicated by Ramaswamy H. Sarma.


Assuntos
Arginina , Transportador 1 de Aminoácidos Catiônicos , Animais , Humanos , Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Óxido Nítrico Sintase , Simulação de Dinâmica Molecular , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Água/metabolismo , Mamíferos/metabolismo
7.
Sci Rep ; 12(1): 21832, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528691

RESUMO

Amino acid-mediated metabolism is one of the key catabolic and anabolic processes involved in diverse cellular functions. However, the role of the semi-essential amino acid arginine in normal and malignant hematopoietic cell development is poorly understood. Here we report that a continuous supply of exogenous arginine is required for the maintenance/function of normal hematopoietic stem cells (HSCs). Surprisingly, knockout of Slc7a3 (CAT3), a major L-arginine transporter, does not affect HSCs in steady-state or under stress. Although Slc7a3 is highly expressed in naïve and activated CD8 T cells, neither T cell development nor activation/proliferation is impacted by Slc7a3 depletion. Furthermore, the Slc7a3 deletion does not attenuate leukemia development driven by Pten loss or the oncogenic Ptpn11E76K mutation. Arginine uptake assays reveal that L-arginine uptake is not disrupted in Slc7a3 knockout cells. These data suggest that extracellular arginine is critically important for HSCs, but CAT3 is dispensable for normal hematopoiesis and leukemogenesis.


Assuntos
Hematopoese , Animais , Camundongos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Transporte Biológico , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
8.
Mol Cells ; 45(12): 963-975, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36572564

RESUMO

Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.


Assuntos
Adipócitos , Sistemas de Transporte de Aminoácidos Básicos , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Putrescina , Animais , Camundongos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Poliaminas/farmacologia , Putrescina/farmacologia , Sistemas de Transporte de Aminoácidos Básicos/metabolismo
9.
Parasit Vectors ; 15(1): 383, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271393

RESUMO

BACKGROUND: The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS: We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS: In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS: Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.


Assuntos
Aedes , Animais , Aedes/genética , Aedes/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/genética , Fertilidade
10.
Fluids Barriers CNS ; 19(1): 77, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131285

RESUMO

BACKGROUND: The hormone leptin exerts its function in the brain to reduce food intake and increase energy expenditure to prevent obesity. However, most obese subjects reflect the resistance to leptin even with elevated serum leptin. Considering that leptin must cross the blood-brain barrier (BBB) in several regions to enter the brain parenchyma, altered leptin transport through the BBB might play an important role in leptin resistance and other biological conditions. Here, we report the use of a human induced pluripotent stem cell (iPSC)-derived BBB model to explore mechanisms that influence leptin transport. METHODS: iPSCs were differentiated into brain microvascular endothelial cell (BMEC)-like cells using standard methods. BMEC-like cells were cultured in Transwell filters, treated with ligands from a nuclear receptor agonist library, and assayed for leptin transport using an enzyme-linked immune sorbent assay. RNA sequencing was further used to identify differentially regulated genes and pathways. The role of a select hit in leptin transport was tested with the competitive substrate assay and after gene knockdown using CRISPR techniques. RESULTS: Following a screen of 73 compounds, 17ß-estradiol was identified as a compound that could significantly increase leptin transport. RNA sequencing revealed many differentially expressed transmembrane transporters after 17ß-estradiol treatment. Of these, cationic amino acid transporter-1 (CAT-1, encoded by SLC7A1) was selected for follow-up analyses due to its high and selective expression in BMECs in vivo. Treatment of BMEC-like cells with CAT-1 substrates, as well as knockdown of CAT-1 expression via CRISPR-mediated epigenome editing, yielded significant increases in leptin transport. CONCLUSIONS: A major female sex hormone, as well as an amino acid transporter, were revealed as regulators of leptin BBB transport in the iPSC-derived BBB model. Outcomes from this work provide insights into regulation of hormone transport across the BBB.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Leptina/metabolismo , Leptina/farmacologia , Ligantes , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia
11.
Biochim Biophys Acta Biomembr ; 1864(11): 184012, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914570

RESUMO

Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.


Assuntos
Natamicina , Proteínas de Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/química , Colesterol/química , Ergosterol/química , Lisina/metabolismo , Natamicina/metabolismo , Natamicina/farmacologia , Polienos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
12.
Biosci Biotechnol Biochem ; 86(9): 1300-1307, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749478

RESUMO

Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Biofilm formation by yeast is a critical issue in clinical and industrial fields because of the strong adhesion of yeast biofilm to abiotic surfaces and tissues. Here, we clarified the arginine-mediated inhibition of biofilm formation by yeast. First, we showed that arginine inhibits biofilm formation in fungi such as Saccharomyces cerevisiae, Candida glabrata, and Cladosporium cladosporioides, but not in bacteria. In regard to the underlying mechanism, biochemical analysis indicated that arginine inhibits biofilm formation by suppressing Flo11-dependent flocculation. Intriguingly, a strain with deletion of the arginine transporter-encoding CAN1 was insensitive to arginine-mediated inhibition of biofilm formation. Finally, Can1 endocytosis appeared to be required for the inhibitory mechanism of biofilm formation by arginine. The present results could help to elucidate the molecular mechanism of yeast biofilm formation and its control.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Arginina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/farmacologia , Biofilmes , Endocitose , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Prostaglandins Other Lipid Mediat ; 162: 106651, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35680078

RESUMO

Cystinuria is a genetic disorder of cystine transport, including defective protein b0,+AT (encoded by SLC7A9), and/or rBAT (encoded by SLC3A1). Patients present hyperexcretion of cystine in the urine, recurrent cystine lithiasis, and progressive decline in kidney function. Moreover, heterodimer transport is defective. To date, little omics data are accessible regarding this metabolic disease caused by membrane proteins. Since membrane function is closely related to changes in the lipidome, we decided to explore the changes in kidney tissue of a self-established cystinuria rat model by performing lipidomic analysis by LC-MS/MS. Our results demonstrated that Slc7a9 deficiency changed the lipid profile of the renal cortex and induced vital modifications in the lipidome, including major alterations in ChE, LPA, and PA. Among those alterations, this lipidomic study highlights the lipid changes that participate in inflammatory responses during cystinuria. As a result, lipid research, perhaps has great potential, for it may lead to the identification of novel therapeutic targets for the prevention and treatment of cystinuria.


Assuntos
Cistinúria , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Cromatografia Líquida , Cistina/metabolismo , Cistinúria/genética , Cistinúria/metabolismo , Rim/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Lipídeos , Ratos , Espectrometria de Massas em Tandem
14.
Nat Commun ; 13(1): 2708, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577790

RESUMO

Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Cálcio , Cistinúria , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/ultraestrutura , Cálcio/química , Cálcio/metabolismo , Cistina/metabolismo , Cistinúria/genética , Cistinúria/metabolismo , Humanos
15.
Urolithiasis ; 50(3): 279-291, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35416493

RESUMO

Cystinuria is a genetic disorder of cystine transport that accounts for 1-2% of all cases of renal lithiasis. It is characterized by hyperexcretion of cystine in urine and recurrent cystine lithiasis. Defective transport of cystine into epithelial cells of renal tubules occurs because of mutations of the transport heterodimer, including protein b0,+AT (encoded by SLC7A9) and rBAT (encoded by SLC3A1) linked through a covalent disulfide bond. Study generated a novel type B cystinuria rat model by artificially deleting 7 bp of Slc7a9 gene exon 3 using the CRISPR-Cas9 system, and those Slc7a9-deficient rats were proved to be similar with cystinuria in terms of genome, transcriptome, translation, and biologic phenotypes with no off-target editing. Subsequent comparisons of renal histopathology indicated model rats gained typical secondary changes as medullary fibrosis with no stone formation. A total of 689 DEGs (383 upregulated and 306 downregulated) were differentially expressed in the renal cortex of cystinuria rats. In accordance with the functional annotation of DEGs, the potential role of glutathione metabolism processes in the kidney of cystinuria rat model was proposed, and KEGG analysis results showed that knock-out of Slc7a9 gene triggered more biological changes which has not been studied. In short, for the first time, a rat model and its transcriptional database that mimics the pathogenesis and clinical consequences of human type B cystinuria were generated.


Assuntos
Cistinúria , Litíase , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Cistina/metabolismo , Cistinúria/genética , Cistinúria/metabolismo , Feminino , Humanos , Litíase/complicações , Masculino , Mutação , Ratos
16.
Plant Mol Biol ; 109(4-5): 413-425, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35103913

RESUMO

The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecossistema
17.
Ann Surg Oncol ; 29(4): 2699-2709, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773193

RESUMO

BACKGROUND: The expression of solute carrier (SLC) 7 family genes is reportedly associated with several malignancies. Here, we focused on SLC7A9 and investigated its expression, function, and clinical significance in esophageal squamous cell carcinoma (ESCC). METHODS: SLC7A9 transcription levels were evaluated in 13 ESCC cell lines, and polymerase chain reaction (PCR) array analysis was conducted to detect coordinately expressed genes with SLC7A9. SLC7A9 contributions to proliferation, invasion, and migration were evaluated in ESCC cells subjected to siRNA-mediated gene knockdown and pCMV6-entry plasmid-mediated overexpression. SLC7A9 expression was detected in 189 ESCC tissues by quantitative reverse-transcription (qRT)-PCR and correlated with clinicopathological parameters. RESULTS: The expression levels of SLC7A9 varied widely in ESCC cell lines and correlated with FGFBP1 expression. Knockdown of SLC7A9 significantly suppressed the proliferation, invasion, and migration of the ESCC cell lines. Moreover, overexpression of SLC7A9 enhanced cell proliferation and migration. In analyses of clinical specimens, SLC7A9 mRNA was overexpressed in the ESCC tissues compared with the adjacent normal esophageal tissues. High mRNA expression was significantly associated with high levels of squamous cell carcinoma-related antigen and carcinoembryonic antigen, advanced disease stage, and lymph node metastasis. High SLC7A9 expression was also significantly associated with poor disease-specific and disease-free survival, and lymph node recurrence after radical surgery, but not with the other recurrence patterns. On multivariate analysis, high SLC7A9 expression was an independent predictor of lymph node recurrence. CONCLUSIONS: SLC7A9 influences the malignant behavior of ESCC cells. Tumor SLC7A9 expression may serve as a novel biomarker for predicting lymph node metastasis and recurrence in ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Prognóstico
18.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638549

RESUMO

Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antifúngicos/farmacologia , Cicloeximida/farmacologia , Endocitose/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos
19.
J Biol Chem ; 297(4): 101168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487760

RESUMO

LysO, a prototypical member of the LysO family, mediates export of L-lysine (Lys) and resistance to the toxic Lys antimetabolite, L-thialysine (Thl) in Escherichia coli. Here, we have addressed unknown aspects of LysO function pertaining to its membrane topology and the mechanism by which it mediates Lys/Thl export. Using substituted cysteine (Cys) accessibility, here we delineated the membrane topology of LysO. Our studies support a model in which both the N- and C-termini of LysO are present at the periplasmic face of the membrane with a transmembrane (TM) domain comprising eight TM segments (TMSs) between them. In addition, a feature of intramembrane solvent exposure in LysO is inferred with the identification of membrane-located solvent-exposed Cys residues. Isosteric substitutions of a pair of conserved acidic residues, one E233, located in the solvent-exposed TMS7 and the other D261, in a solvent-exposed intramembrane segment located between TMS7 and TMS8, abolished LysO function in vivo. Thl, but not Lys, elicited proton release in inside-out membrane vesicles, a process requiring the presence of both E233 and D261. We postulate that Thl may be exported in antiport with H+ and that Lys may be a low-affinity export substrate. Our findings are compatible with a physiological scenario wherein in vivo LysO exports the naturally occurring antimetabolite Thl with higher affinity over the essential cellular metabolite Lys, thus affording protection from Thl toxicity and limiting wasteful export of Lys.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Membrana Celular/química , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Transporte Biológico Ativo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344826

RESUMO

Lysosomes degrade excess or damaged cellular components and recycle their building blocks through membrane transporters. They also act as nutrient-sensing signaling hubs to coordinate cell responses. The membrane protein PQ-loop repeat-containing protein 2 (PQLC2; "picklock two") is implicated in both functions, as it exports cationic amino acids from lysosomes and serves as a receptor and amino acid sensor to recruit the C9orf72/SMCR8/WDR41 complex to lysosomes upon nutrient starvation. Its transport activity is essential for drug treatment of the rare disease cystinosis. Here, we quantitatively studied PQLC2 transport activity using electrophysiological and biochemical methods. Charge/substrate ratio, intracellular pH, and reversal potential measurements showed that it operates in a uniporter mode. Thus, PQLC2 is uncoupled from the steep lysosomal proton gradient, unlike many lysosomal transporters, enabling bidirectional cationic amino acid transport across the organelle membrane. Surprisingly, the specific presence of arginine, but not other substrates (lysine, histidine), in the discharge ("trans") compartment impaired PQLC2 transport. Kinetic modeling of the uniport cycle recapitulated the paradoxical substrate-yet-inhibitor behavior of arginine, assuming that bound arginine facilitates closing of the transporter's cytosolic gate. Arginine binding may thus tune PQLC2 gating to control its conformation, suggesting a potential mechanism for nutrient signaling by PQLC2 to its interaction partners.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Arginina/farmacologia , Citosol/metabolismo , Feminino , Células HEK293 , Humanos , Cinética , Lisina/metabolismo , Lisina/farmacologia , Lisossomos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...