Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Mol Ecol ; 33(21): e17536, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39360493

RESUMO

Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.


Assuntos
Secas , Redes Reguladoras de Genes , Solanum , Estresse Fisiológico , Solanum/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Ecossistema , Evolução Molecular , Regulação da Expressão Gênica de Plantas , América do Sul , Seleção Genética
2.
Braz J Biol ; 84: e285691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292140

RESUMO

The lulo (Solanum quitoense Lam.) is a fruit tree of great importance for southern Colombia, given its demand and its potential as an exotic fruit in the international market. However, there is no information on variation and heritability, fundamental aspects for evaluating selection. The objective of this research was to estimate the heritability of yield, fruit weight (FW), total soluble solids (TSS) and maturity index (MI) in half-sib families (HSF) of lulo from the first cycle of recurrent selection. Strict sense heritability ( h e 2 ) across four locations in the 50 HSF were low for yield, MI and for FW, while for TSS it was high. The 50 FMH showed a high h e 2 in yield in Arboleda, Cartago, Tangua and La Unión. TSS was high in all four locations. For FW it was moderate in Cartago, Tangua, La Unión and Arboleda. In MI it was high in Tangua and La Unión and low in Arboleda and Cartago. The h e 2 in 10 HSF selected across four locations presented values ​​higher than 50 HSF, with a high value for yield in Arboleda, moderate in Cartago and Tangua and low in La Unión; In FW it was high in Arboleda, Tangua and La Unión, and moderate in Cartago. The results indicate the existence of adequate genetic variance to be able to select and achieve high genetic gain in the traits evaluated in HSF of lulo.


Assuntos
Frutas , Solanum , Frutas/genética , Solanum/genética , Solanum/classificação , Colômbia , Fenótipo , Característica Quantitativa Herdável
3.
Braz J Biol ; 84: e281628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109719

RESUMO

The increasing need for sustainable alternatives to synthetic insecticides has driven the analysis of extracts from Solanum habrochaites, a wild tomato, through fractionated column chromatography. Potential bioactive compounds for pest management, a clean and promising biotechnological solution, have been reported from this plant. The objective is to provide detailed gas chromatography data, including peaks, structural formulas, and retention indices for the extracts of S. habrochaites aerial parts. Column chromatographic analysis was conducted with five fractions (F1, F2, F5, F3, and F4) of S. habrochaites extracts. Long-chain hydrocarbons such as hexadecanoic acid and docosano were identified in the F1 fraction; fatty acid esters, including hexadecanoate and octadecenoate ethyls in the F2 and methyl ketones, with tridecan-2-one as the major component in the F5, while no identifiable compounds were disclosed in the F3 and F4 fractions. The column chromatography provided valuable insights into compounds in the F1, F2, and F5 fractions of S. habrochaites extracts, highlighting fatty acid esters, long-chain hydrocarbons, and methyl ketones. The bioactive compounds, from extracts of this plant, including the first record of the docosanoate, hexadecanoate and octadecanoate ethyls in S. habrochaites and Solanaceae, reinforces their promising biological application in different areas of science.


Assuntos
Extratos Vegetais , Solanum , Extratos Vegetais/química , Solanum/química , Cromatografia Gasosa , Ácidos Graxos/análise
4.
An Acad Bras Cienc ; 96(2): e20220830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747783

RESUMO

Frugivore bats are important seed dispersers in forests and their abundance are associated with the presence of zoochoric plants. In this context, the aim of our study was to investigate the association of the frugivore bat S. lilium with the diaspores of the zoochoric plant S. mauritianum, a common arboreal species present in forest fragments of southern Brazil. We also investigated the diet of the species based on seed content present in feces of individuals. Bats were mist-netted from November 2017 to April 2018 in a fragment of Atlantic Forest. The proportion of immature and mature diaspores of S. mauritianum was estimated in the same area where bats were sampled, and feces were sampled from captured individuals. In total, 61 individuals of S. lilium were captured, and 795 seeds were sampled from their feces. The abundance of S. lilium was significantly associated with the proportion of immature diaspores of S. mauritianum. We identified seeds of two botanical families: Solanaceae (89%) and Moraceae (11%) in the fecal samples. Our findings support the view that S. lilium is a legitimate disperser of S. mauritianum, and that its ecological function is probably a result of co-adaptation.


Assuntos
Quirópteros , Fezes , Florestas , Animais , Brasil , Quirópteros/classificação , Fezes/química , Solanum/classificação , Dispersão de Sementes , Densidade Demográfica , Sementes
5.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608140

RESUMO

Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.


Assuntos
Diploide , Genoma de Planta , Solanum , Solanum/genética , Solanum tuberosum/genética , Cromossomos de Plantas/genética , Anotação de Sequência Molecular , Genômica/métodos , Mapeamento Cromossômico , Filogenia , México
6.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 304-325, mar. 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1552604

RESUMO

The physicochemical, microbiological and metabolomics analysis, antioxidant and lipid - lowering effect, and shelf life prediction of a functional beverage based on cocona pul p of SRN9 ecotype was to carry out. According to the results obtained, the beverage complies with all the characteristics of the Peruvian technical standard for juices, nectars and fruit beverages NTP 203.110:2009 and is within the limits established by th e sanitary technical standard NTS N° 071 - MINSA/DIGESA - V.01, with a shelf - life period of 4 months and 1 day. The metabolome regarding bioactive compounds showed the presence of 30 compounds, including several glycosylated flavonols, two flavanols, and two s permidines. Likewise, showed a lipid - lowering effect statistically significant (p < 0.05) about the serum levels of total cholesterol and triglycerides, with a mean reduction of 41.52 mg/dL for total cholesterol levels and 130.80 mg/dL for triglyceride lev els. This beverage could be an alternative for the treatment of atherosclerosis and prevention of cardiovascular diseases.


Se rea lizó el análisis fisicoquímico, microbiológico y metabolómico, efecto antioxidante e hipolipemiante, y vida útil de una bebida funcional a base de cocona ecotipo SRN9. De acuerdo a los resultados, la bebida cumple con las características de la norma técnic a peruana para jugos, néctares y bebidas de frutas NTP 203.110:2009 y se encuentra dentro de los límites establecidos por la norma técnica sanitaria NTS N° 071 - MINSA/DIGESA - V.01, con una vida útil de 4 meses y 1 día. Del perfil metabolómico se identificaro n 30 compuestos, entre ellos varios flavonoles glicosilados, dos flavanoles y dos espermidinas. Asimismo, mostró un efecto hipolipemiante estadísticamente significativo (p < 0,05) sobre los niveles séricos de colesterol total y triglicéridos, con una reduc ción media de 41,52 mg/dL y de 130,80 mg/dL para los niveles de colesterol total y de triglicéridos, respectivamente. Esta bebida podría ser una alternativa para el tratamiento de la aterosclerosis y prevención de enfermedades cardiovasculares.


Assuntos
Solanum/química , Sucos de Frutas e Vegetais/análise , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/análise , Flavonóis/análise , Alimento Funcional/análise , Espectrometria de Massa com Cromatografia Líquida/métodos , Concentração de Íons de Hidrogênio
7.
Food Chem ; 446: 138808, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408398

RESUMO

Calystegines are potent glycosidase inhibitors with therapeutic potential and are constituents of food and feed with potential toxic effects. This study aims to target calystegines and other nitrogenous substances in food plants. Hydroalcoholic extracts from Solanum tuberosum, Ipomoea batatas, S. lycocarpum, and fruit from S. lycopersicum, S. aethiopicum, S. paniculatum, S. crinitum, and S. acanthodes were analyzed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using an acidic HILIC column. The dereplication approach included data processing using MZMine2, FBMN-GNPS, and structure elucidation and interpretation of the organized data. The calystegines A3, A5, B2, and C1 were identified, and several potential new calystegine analogues: three may correspond to new calystegines of the A-group, one glycosyl derivative of calystegine A3, and two glycosyl derivatives of the B-group. These findings help to direct the search for new calystegines. In addition, the dereplication approach enabled the annotation of 22 other nitrogen compounds.


Assuntos
Solanum , Plantas Comestíveis , Espectrometria de Massas em Tandem , Frutas , Brasil
8.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994626

RESUMO

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Assuntos
Solanum lycopersicum , Solanum , Animais , Polinização , Flores , Plantas , Pólen , Solo
9.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37818893

RESUMO

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Assuntos
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamanho do Órgão/genética , Gigantismo/genética , Locos de Características Quantitativas/genética , Solanum/genética , Frutas/genética
10.
Chem Biodivers ; 20(12): e202301423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874748

RESUMO

We present the inhibitory properties of the Solanum nigrescens anthocyanin fraction (SNAF) and its major constituents on alpha-glucosidase (AG), pancreatic lipase (PL), HMG-CoA reductase, and ornithine decarboxylase (ODC). The effect of SNAF was simultaneously evaluated in ICR male mice exposed to triglyceride charge test (TCT). HPLC-MS profiling revealed the presence cyanidin-3-O-rutinoside-5-glucoside (CRG), delphinidin-3-(p-coumaroyl)-rutinoside-5-glucoside (DCRG), and petunidin-3-(cis-p-coumaroyl)-rutinoside-5-glucoside (PCRG) as major constituents of the fraction. SNAF, CRG, and specially PCRG, induced strong non-competitive inhibition on PL (IC50 , 33-86 µg mL-1 ). The results of TCT confirmed their capacity to ameliorate (p <0.001) hypertriglyceridemia during postprandial and interdigestive stages. SNAF, CRG, DCRG, and PCRG caused negligible growth inhibition (MIC>600 µg mL-1 ) on beneficial bacteria whereas SNAF and DCRG exerted inhibitory activity on Helicobacter pylori ATCC 53504 (MIC,187-64 µg mL-1 ). Additional exploration revealed that SNAF and DCRG produced non-competitive activity on H. pylori urease, which facilitates bacterial growth under acidic conditions.


Assuntos
Helicobacter pylori , Hipertrigliceridemia , Solanum , Camundongos , Animais , Antocianinas/farmacologia , Antocianinas/análise , Camundongos Endogâmicos ICR , Suplementos Nutricionais , Hipertrigliceridemia/tratamento farmacológico , Glucosídeos/farmacologia , Cromatografia Líquida de Alta Pressão
12.
PLoS One ; 18(6): e0287178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319140

RESUMO

Tomato plants are sensitive to drought stress throughout their growth cycle. To be considered drought-tolerant, a cultivar should display tolerance at all developmental stages. This study aimed to evaluate whether Solanum pennellii introgression lines (ILs) previously selected as drought-tolerant during germination/seedling growth maintained this tolerance in the vegetative/reproductive stage. We then investigated these ILs to uncover candidate genes. The plants were subjected to two different environmental conditions: well-watered and drought-stressed (water withheld for ≤ 20 d after flowering). Phenotyping for morphological, physiological, fruit quality, and yield-related traits was performed, and the data was analyzed using a mixed-model approach. Using a multi-trait index that relies on factor analysis and genotype-ideotype distance (FAI-BLUP index), the genotypes were ordered based on how far they were from the drought-tolerant ideotype. Afterward, the tomato IL population map furnished by the SOL Genomics Network was utilized to identify introgressed segments of significance for the identification of candidate genes. Significant genotypic differences were found in the yield, water content, mean weight, length, and width of the fruit, the percentage of fruits displaying blossom-end rot, and titratable acidity. The drought-tolerance ideotype was built considering the maximum values for the fruit water content, number of fruits, mean fruit weight, and yield, minimum values for blossom-end rot, and mean values for titratable acidity. IL 1-4-18, IL 7-4-1, IL 7-1, IL 7-5-5, and IL 1-2 were ranked above M-82 and therefore considered drought-tolerant during the vegetative/reproductive stage. IL 1-4-18 and IL1-2 sustained drought tolerance displayed during germination/seedling growth into the vegetative/reproductive stage. The following candidate genes associated with drought tolerance were identified: AHG2, At1g55840, PRXIIF, SAP5, REF4-RELATED 1, PRXQ, CFS1, LCD, CCD1, and SCS. Because they are already associated with genetic markers, they can be transferred to elite tomato cultivars through marker-assisted technology after validation.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Solanum/genética , Resistência à Seca , Interleucina-7 , Secas , Água , Interleucina-1
13.
Environ Microbiol ; 25(10): 1830-1846, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171093

RESUMO

The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.


Assuntos
Solanum lycopersicum , Solanum , Alternaria/genética , Produtos Agrícolas , Chile
14.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960534

RESUMO

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Assuntos
Capsicum , Solanum , Fósseis , Frutas , América do Sul , Filogenia
15.
Planta ; 257(4): 76, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894799

RESUMO

MAIN CONCLUSION: Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.


Assuntos
Mariposas , Solanum lycopersicum , Solanum , Animais , Herbivoria , Larva , Nitrogênio
16.
J Exp Bot ; 74(10): 3240-3254, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36880316

RESUMO

Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Etilenos , Glucanos , Phytophthora infestans/fisiologia , Doenças das Plantas
17.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36689773

RESUMO

The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.


Assuntos
COVID-19 , Nanopartículas Metálicas , Solanum , Humanos , Nanopartículas Metálicas/química , Ouro/farmacologia , Ouro/química , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier , Prata/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
18.
Microb Ecol ; 85(1): 168-183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041070

RESUMO

Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world's most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.


Assuntos
Microbiota , Solanum lycopersicum , Solanum , Disbiose , Peru , Folhas de Planta/microbiologia , Plantas/microbiologia
20.
Rev Peru Med Exp Salud Publica ; 39(3): 321-327, 2022.
Artigo em Espanhol, Inglês | MEDLINE | ID: mdl-36478165

RESUMO

OBJECTIVE.: To analyze and determine the in vitro antifungical activity of the ethanolic extract of the leaves of Solanum hispidum Pers. MATERIALS AND METHODS.: We carried out a preliminary qualitative phytochemical analysis by color and precipitation reactions. We evaluated the in vitro antifungical activity against Candida albicans, Aspergillus brasilensis and Trichophyton mentagrophytes by using the agar well diffusion method and the minimum inhibitory concentration (MIC) assay. RESULTS.: Preliminary qualitative phytochemical analysis showed the presence of phenolic compounds, tannins, flavonoids, steroids, alkaloids and saponins. In vitro antifungal activity was demonstrated for all fungal cultures with inhibition halos between 23 to 26 mm. The MIC values were 125, 250, and 125 µg/mL for C. albicans, A. brasilensis, and T. mentagrophytes, respectively. CONCLUSIONS.: The ethanolic extract of the leaves of Solanum hispidum Pers. contains important secondary metabolites and has moderate antifungical activity.


OBJETIVO: . Analizar y determinar la actividad antifúngica in vitro del extracto etanólico de las hojas de Solanum hispidum Pers. MATERIALES Y MÉTODOS: . Se realizó el análisis fitoquímico preliminar cualitativo mediante reacciones de color y precipitación. Se investigó la actividad antifúngica in vitro frente a Candida albicans, Aspergillus brasilensis y Trichophyton mentagrophytes usando el método de difusión en pozo de agar y el ensayo de la concentración mínima inhibitoria (CMI). RESULTADOS: . El análisis fitoquímico preliminar cualitativo mostró la presencia de compuestos fenólicos, taninos, flavonoides, esteroides, alcaloides y saponinas. La actividad antifúngica in vitro fue demostrada para todos cultivos fúngicos con halos de inhibición entre 23 a 26 mm. Los valores de la CMI fueron de 125, 250 y 125 µg/mL para C. albicans, A. brasilensis y T. mentagrophytes, respectivamente. CONCLUSIONES.: El extracto etanólico de las hojas de Solanum hispidum Pers contiene importantes metabolitos secundarios y tiene moderada actividad antifúngica.


Assuntos
Solanum , Exercício Físico , Extratos Vegetais/farmacologia , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA