Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 100(1): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37548596

RESUMO

PURPOSE: This manuscript aimed for the generation of γ-irradiation derived mutants of potato genotype PAU/RR-1501 possessing desirable processing traits. MATERIALS AND METHODS: Nodal cuttings from virus-free explants were established on basal MS medium and irradiated with different doses (0, 5, 10 and 20 Gy) of γ-irradiation. The 5 and 10 Gy treated plantlets were multiplied and used for micro-tuber induction. Harvested micro-tubers were planted in pots for the selection and evaluation of mutants in M1V2 generation. RESULTS: Four weeks post-treatment, plantlets (5 Gy) showed enhanced growth as compared to the control while 20 Gy treatment exhibited completely ceased shoot growth. The highest number and weight of mini-tubers per plant was recorded for 10 Gy followed by 5 Gy treatment as compared to control. The γ-irradiation treatments caused changes in the skin color and shape of M1V2 tubers. CONCLUSION: Under the 5 Gy treatment 49.9% of clones produced exhibited cream and 8.53% brown skin color. Nine putative mutants were identified in genotype PAU/RR-1501 exhibiting promising processing traits.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Fenótipo , Genótipo
2.
Plant Physiol ; 187(3): 1071-1086, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734280

RESUMO

Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism. Interestingly, microRNA156 overexpression in potato provided the first evidence for induction of profuse aerial stolons and tubers from axillary meristems under short-day (SD) photoperiod. A similar phenotype was noticed for overexpression of epigenetic modifiers-MUTICOPY SUPRESSOR OF IRA1 (StMSI1) or ENAHNCER OF ZESTE 2 (StE[z]2), and knockdown of B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1 (StBMI1). This striking phenotype represents a classic example of modulation of plant architecture and developmental plasticity. Differentiation of a stolon to a tuber or a shoot under in vitro or in vivo conditions symbolizes another example of organ-level plasticity and dual fate acquisition in potato. Stolon-to-tuber transition is governed by SD photoperiod, mobile RNAs/proteins, phytohormones, a plethora of small RNAs and their targets. Recent studies show that polycomb group proteins control microRNA156, phytohormone metabolism/transport/signaling and key tuberization genes through histone modifications to govern tuber development. Our comparative analysis of differentially expressed genes between the overexpression lines of StMSI1, StBEL5 (BEL1-LIKE transcription factor [TF]), and POTATO HOMEOBOX 15 TF revealed more than 1,000 common genes, indicative of a mutual gene regulatory network potentially involved in the formation of aerial and belowground tubers. In this review, in addition to key tuberization factors, we highlight the role of photoperiod and epigenetic mechanism that regulates the development of aerial and belowground tubers in potato.


Assuntos
Plasticidade Celular , Epigênese Genética , Fotoperíodo , Solanum tuberosum/genética , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/efeitos da radiação
3.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069787

RESUMO

We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv'/Fm') did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.


Assuntos
Enterobius/fisiologia , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/parasitologia , Solanum tuberosum/efeitos da radiação , Animais , Transporte de Elétrons , Comportamento Alimentar , Peróxido de Hidrogênio/metabolismo , Teoria Quântica
4.
PLoS One ; 15(10): e0241081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33085713

RESUMO

Global climate change accompanied by continuous increases in atmospheric carbon dioxide (CO2) concentration and temperature affects the growth and yield of important crops. The present study investigated the effect of elevated temperature and CO2 concentrations on the growth, yield, and photosynthesis of potato (Solanum tuberosum L. cv. Superior) crops using Korean Soil-Plant-Atmosphere-Research chambers that allow the regulation of temperature and CO2 concentration under daylight conditions. Based on the average temperature from 1991 to 2010 in the Jeonju area, South Korea, potato plants were exposed to four different conditions: ambient weather (400 µmol mol-1, aCaT), elevated temperature (+4°C, aCeT), elevated CO2 concentration (800 µmol mol-1, eCaT), and concurrently elevated CO2 concentration and temperature (eCeT). Under aCeT conditions, the temperature exceeded the optimal growth temperature range towards the late growth phase that decreased stomatal conductance and canopy net photosynthetic rate and subsequently reduced biomass and tuber yield. Stomatal conductance and chlorophyll concentration were lower under eCaT conditions than under aCaT conditions, whereas late-growth phase biomass and tuber yield were greater. Compared to other conditions, eCeT yielded a distinct increase in growth and development and canopy net photosynthetic rate during tuber initiation and bulking. Consequently, biomass and canopy net photosynthesis increased, and tuber yield increased by 20.3%, which could be attributed to the increased tuber size, rather than increased tuber number. Elevated CO2 reduced chlorophyll, magnesium, and phosphorus concentrations; reducing nitrogen concentration (by approximately 39.7%) increased the C:N ratio. The data indicate that future climate conditions will likely change nutrient concentration and quality of crops. The present study shows that while elevated temperature may negatively influence the growth and yield of potato crops, especially towards the late-growth phase, the concurrent and appropriate elevation of CO2 and temperature could promote balanced development of source and sink organs and positively effect potato productivity and quality.


Assuntos
Dióxido de Carbono/farmacologia , Mudança Climática , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Temperatura , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/efeitos da radiação
5.
PLoS One ; 15(9): e0235522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946481

RESUMO

Light conditions in retail stores may contribute to potato greening. In this study, we aimed to develop a potato tuber greening risk rating model for retail stores based on light quality and intensity parameters. This was achieved by firstly exposing three potato varieties (Nicola, Maranca and Kennebec) to seven specific light wavelengths (370, 420, 450, 530, 630, 660 and 735 nm) to determine the tuber greening propensity. Detailed light quality and intensity measurements from 25 retail stores were then combined with the greening propensity data to develop a tuber greening risk rating model. Our study showed that maximum greening occurred under blue light (450 nm), while 53%, 65% and 75% less occurred under green (530 nm), red (660 nm) and orange (630 nm) light, respectively. Greening risk, which varied between stores, was found to be related to light intensity level, and partially explained potato stock loss in stores. Our results from this study suggested that other in-store management practices, including lighting duration, average potato turnover, and light protection during non-retail periods, likely influence tuber greening risk.


Assuntos
Luz/efeitos adversos , Iluminação/efeitos adversos , Tubérculos/efeitos da radiação , Solanum tuberosum/efeitos da radiação , Verduras/efeitos da radiação , Comércio , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Iluminação/instrumentação , Iluminação/métodos , Tubérculos/metabolismo , Medição de Risco/métodos , Fatores de Risco , Solanum tuberosum/economia , Solanum tuberosum/metabolismo , Fatores de Tempo , Verduras/economia , Verduras/metabolismo
6.
J Food Sci ; 85(9): 2745-2753, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32799366

RESUMO

Dried sweet potatoes (SPs) are often irradiated for improved safety and shelf life. Formation of irradiation-derived radicals was analyzed using electron paramagnetic resonance (EPR) spectroscopy. These irradiation-specific radicals can be used to characterize the irradiation history of dry plant-based foods containing cellulose and sugars. The signal characteristics (intensity and peak shape) were evaluated at different sample locations (skin and flesh), as a function of sample preparation method (grinding, sieving, and pelletizing). The signal intensity was quantified using a double integration method of the peaks based on the area under the curve. The sieving caused ca. 50% decrease in total signal intensity as compared to nonsieved samples due to loss of cellulose-based radicals. The flesh of irradiated SP showed complex EPR spectra with multiple satellite peaks of cellulose radicals (333.5 and 338.8 mT) and split peak of dextrose radicals (337.4 mT); while skin spectra were distinctive of cellulose radicals. In this study, we demonstrated the effects of sample composition and preparation method on formation and analysis of irradiation-specific radicals based on EPR. PRACTICAL APPLICATION: In the last decade or so, there have been health concerns related to the consumption of irradiated pet food products. Electron paramagnetic resonance spectroscopy can be used to analyze the irradiation history of dry products containing cellulose and sugar, such as the popular dog treat dried sweet potatoes, to ensure the products were irradiated within safe limits. This work demonstrates that the formation of irradiation-specific radicals is affected by the sample location (skin and flesh) and moisture content.


Assuntos
Celulose/química , Radicais Livres/química , Glucose/química , Extratos Vegetais/química , Tubérculos/química , Solanum tuberosum/efeitos da radiação , Animais , Cães , Espectroscopia de Ressonância de Spin Eletrônica , Irradiação de Alimentos , Raios gama , Tubérculos/efeitos da radiação , Solanum tuberosum/química
7.
Plant Signal Behav ; 15(9): 1783490, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580625

RESUMO

UV-B is an important environmental factor that differentially affects plant growth and secondary metabolites. However, our knowledge regarding the physiological and biochemical changes in under-ground plant organs responded to UV-B treatment remains limited. In this study, we investigated potato plant (Solanum tuberosum L.) and tuber responses to short-term supplemental UV-B exposure performed during tuber development. Our results indicated that the supplemental UV-B radiation with relative low dose had no obvious adverse impact on plant growth or tuber production. Nutritional composition analyses of tubers revealed that the contents of starch, soluble sugars, and proteins were significantly increased under lower UV-B radiation relative to controls. Similarly, low dose of UV-B treatment promoted the health-promoting compounds, including anthocyanin, phenols, and flavonoids in tubers. Moreover, higher activities of antioxidant enzymes were significantly induced in tubers in response to lower UV-B radiation. These findings suggest that short-term UV-B radiation supplementation at relative low doses can improve the tuber quality in potato plants.


Assuntos
Tubérculos/efeitos da radiação , Solanum tuberosum/efeitos da radiação , Raios Ultravioleta , Proteínas de Plantas/metabolismo
8.
Plant Biol (Stuttg) ; 22(3): 425-432, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32052535

RESUMO

Cyanide-resistant respiration in potato mitochondria is an important pathway for energy dissipation. It can be activated by high light; however, it is unclear what roles cyanide-resistant respiration plays in the response to high light stress in potato. We designed a CRISPR vector for the functional gene StAOX of the potato cyanide-resistant respiratory pathway. Agrobacterium tumefaciens GV3101 was transformed into potato. Hydrogen peroxide level, MDA content, antioxidant activity and cyanide-resistant respiratory capacity of potato leaves under high light stress were determined. Photosynthetic efficiency and chlorophyll content were determined. In addition, the operation of the malate-oxaloacetate shuttle route and transcription level of photorespiration-related enzymes were also examined. The results showed that two base substitutions occurred at the sequencing target site on leaves of the transformed potato. Accumulation of ROS and increased membrane lipid peroxidation were detected in the transformed potato leaves and lower photosynthetic efficiency was observed. The transcription level of the malate-oxaloacetate shuttle route and photorespiration-related enzymes also significantly increased. These results indicate that the cyanide-resistant respiration is an important physiological pathway in potato in response to high light stress. It also suggests that plant cyanide-resistant respiration is closely related to photosynthesis. This implies the unexplored importance of plant cyanide-resistant respiration in plant photosynthesis, energy conversion and carbon skeleton formation.


Assuntos
Respiração Celular , Cianetos , Resistência a Medicamentos , Luz , Folhas de Planta , Solanum tuberosum , Agrobacterium tumefaciens/genética , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Clorofila , Cianetos/toxicidade , Oxirredutases/genética , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/efeitos da radiação
9.
New Phytol ; 225(3): 1273-1284, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758555

RESUMO

Light-induced tuber greening is one of the most important quality defects of potato. Although varietal and maturity factors are known to affect greening resistance, physiological mechanisms of resistance are poorly understood. We proposed that physiological and biochemical factors within the tuber periderm provide resistance and hypothesised that resistance is primarily related to suberin content. We investigated differences in the tuber periderm between genotypes and tuber maturities that varied in greening propensity. We examined suberin and light-induced pigment accumulation, and phellem cell development and studied greening propensity in mutant and chemically treated tubers with enhanced suberisation. Resistance to greening was strongly linked to increased suberin in the periderm, which varied with variety and tuber maturity. Furthermore, greening was reduced in mutant and chemically treated tubers with enhanced suberisation. Increases in phellem cell layers and light-induced carotenoids and anthocyanins were identified as secondary resistance factors. Our work represents the first physiological mechanism of varietal and tuber maturity resistance to greening, expanding the known functionality of suberin and providing for the first time a biomarker that will aid producers and breeders in selection and improvement of potato varieties for greening resistance.


Assuntos
Lipídeos/química , Tubérculos/metabolismo , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Lipídeos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação
10.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623239

RESUMO

Light is one of the most important abiotic factors for most plants, which affects almost all growth and development stages. In this study, physiological indicators suggest that the application of exogenous Ca2+ improves photosynthesis and changes phytohormone levels. Under weak light, photosynthetic parameters of the net photosynthetic rate (PN), stomatal conductance (Gs), and transpiration rate (Tr) decreased; the antioxidation systems peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) reduced; the degrees of malondialdehyde (MDA), H2O2, and superoxide anion (O2-) free radical damage increased; while exogenous Ca2+ treatment was significantly improved. RNA-seq analysis indicated that a total of 13,640 differently expressed genes (DEGs) were identified and 97 key DEGs related to hormone, photosynthesis, and calcium regulation were differently transcribed. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, plant hormone signal transduction, photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis were significantly enriched. Additionally, quantitative real-time PCR (qRT-PCR) analysis confirmed some of the key gene functions in response to Ca2+. Overall, these results provide novel insights into the complexity of Ca2+ to relieve injuries under weak light, and they are helpful for potato cultivation under weak light stress.


Assuntos
Cálcio/metabolismo , Luz , Solanum tuberosum/fisiologia , Solanum tuberosum/efeitos da radiação , Transcriptoma , Antioxidantes/metabolismo , Cálcio/farmacologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Fotossíntese/genética , Reguladores de Crescimento de Plantas , Transdução de Sinais , Solanum tuberosum/efeitos dos fármacos , Estresse Fisiológico
11.
Life Sci Space Res (Amst) ; 21: 40-48, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31101154

RESUMO

Light emitting diode (LED) lighting technology for crop production is advancing at a rapid pace, both in terms of the technology itself (e.g., spectral composition and efficiency), and the research that the technological advances have enabled. The application of LED technology for crop production was first explored as a tool for improving the safety and reliability of plant-based bioregenerative life-support systems for long duration human space exploration. Developing and optimizing the lighting environment (spectral quality and quantity) for bioregenerative life-support applications and other controlled environment plant production applications, such as microgreens and sprout production, continues to be an active area of research and LED technology development. This study examines the influence of monochromatic and dichromatic red and blue light on the early development of six food crop species; Cucumis sativa, Solanum lycopersicum, Glycine max, Raphanus sativus, Pisum sativum, and Capsicum annum. Results support previous findings that light responses are often species specific. The results also support the assertion that monochromatic light can interfere with the normal interaction of various photoreceptors (co-action disruption) resulting in intermediate and sometimes unpredictable responses to a given light environment. The nature of the responses reported inform both bioregenerative life-support designs as well as light quality selection for the production of controlled environment crops.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos da radiação , Sistemas de Manutenção da Vida , Luz , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos da radiação , Produção Agrícola , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos da radiação , Sistemas Ecológicos Fechados , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/efeitos da radiação , Raphanus/crescimento & desenvolvimento , Raphanus/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/efeitos da radiação , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos da radiação
12.
Plant Mol Biol ; 100(4-5): 511-525, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31037600

RESUMO

KEY MESSAGE: In response to an ultrasound pulse, several hundred DEGs, including in response to stress, were up- or down-regulated in in vitro potato plantlets. Despite this abiotic stress, plantlets survived. Ultrasound (US) can influence plant growth and development. To better understand the genetic mechanism underlying the physiological response of potato to US, single-node segments of four-week-old in vitro plantlets were subjected to US at 35 kHz for 20 min. Following mRNA purification, 10 cDNA libraries were assessed by RNA-seq. Significantly differentially expressed genes (DEGs) were categorized by gene ontology or Kyoto Encyclopedia of Genes and Genomes identifiers. The expression intensity of 40,430 genes was studied. Several hundred DEGs associated with biosynthesis, carbohydrate metabolism and catabolism, cellular protein modification, and response to stress, and which were expressed mainly in the extracellular region, nucleus, and plasma membrane, were either up- or down-regulated in response to US. RT-qPCR was used to validate RNA-seq data of 10 highly up- or down-regulated DEGs, and both Spearman and Pearson correlations between SeqMonk LFC and RT-qPCR LFC were highly positive (0.97). This study examines how some processes evolved over time (0 h, 24 h, 48 h, 1 week and 4 weeks) after an abiotic stress (US) was imposed on in vitro potato explants, and provides clues to the temporal dynamics in DEG-based enzyme functions in response to this stress. Despite this abiotic stress, plantlets survived.


Assuntos
Expressão Gênica/efeitos da radiação , RNA Mensageiro/metabolismo , Solanum tuberosum/efeitos da radiação , Ondas Ultrassônicas , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Estresse Fisiológico
13.
Dokl Biol Sci ; 484(1): 19-22, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31016499

RESUMO

Potato plant tolerance to chloride salinity rose after short-term exposure to blue light, which has been first shown in this study. The protective effect of blue light was based on its ability to stimulate the accumulation of low-molecular weight organic compounds with antioxidant activity.


Assuntos
Tolerância ao Sal , Solanum tuberosum/fisiologia , Luz Solar , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos da radiação
14.
Sci Rep ; 9(1): 3645, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842430

RESUMO

The combined effect of drought and heat waves on insect-plant interactions is complex and not fully understood. Insects may indirectly benefit from water-deficit stress through increased plant nitrogen levels. Heat stress may have a direct negative effect, yet insect performance may be improved when day-time heat is followed by cooler night temperatures. We show that moderate water-deficit stress (25-30% pot capacity) and high day-night temperatures (30/20 °C) affected Macrosiphum euphorbiae on potato (Solanum tuberosum) differently than their interactions. Water stress lowered stomatal conductance, and both water and heat stress reduced leaf area. The effect of water stress on nymphal and adult survival depended on temperature. Water stress added to reduced nymphal survival at high but not current (25/15 °C) day-night temperatures. Adult survival at high temperatures was reduced only when combined with water stress. Water stress and high temperatures independently but not interactively reduced the number of daily offspring. Moderate water stress when combined with high temperatures had a negative bottom-up effect on aphid survival even though lower night temperatures aided in the recovery from direct heat stress. Our study illustrates the importance of combining multiple stressors to better understand their impact on insect-plant interactions in the context of climate change.


Assuntos
Afídeos/fisiologia , Mudança Climática , Secas , Resposta ao Choque Térmico , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Solanum tuberosum/efeitos da radiação
15.
Physiol Plant ; 167(2): 250-263, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30478903

RESUMO

In the obligate short-day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24-h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.


Assuntos
Regulação da Expressão Gênica de Plantas , Solanum tuberosum/genética , Fatores de Transcrição/metabolismo , Luz , Modelos Biológicos , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Tubérculos/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Solanum tuberosum/efeitos da radiação , Fatores de Transcrição/genética , Regulação para Cima
16.
Plant J ; 98(1): 42-54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552774

RESUMO

The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F (StPHYF) played essential roles in photoperiodic tuberization in potato. By suppressing the StPHYF gene, the strict short-day potato genotype exhibited normal tuber formation under long-day (LD) conditions, together with the degradation of the CONSTANTS protein StCOL1 and modulation of two FLOWERING LOCUS T (FT) paralogs, as demonstrated by the repression of StSP5G and by the activation of StSP6A during the light period. The function of StPHYF was further confirmed through grafting the scion of StPHYF-silenced lines, which induced the tuberization of untransformed stock under LDs, suggesting that StPHYF was involved in the production of mobile signals for tuberization in potato. We also identified that StPHYF exhibited substantial interaction with StPHYB both in vitro and in vivo. Therefore, our results indicate that StPHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with StPHYB.


Assuntos
Fitocromo/metabolismo , Solanum tuberosum/fisiologia , Genótipo , Fotoperíodo , Fitocromo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/fisiologia , Tubérculos/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação
17.
Food Res Int ; 114: 10-19, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361005

RESUMO

Potatoes tubers are the raw materials of many processed food, such as cooked potatoes in hot water, baked potatoes and the most popular fried potatoes. The objective of this work was to study the impact of boiling, baking and frying on microstructure and properties of six potato varieties (Agata, Agria, Innovator, Lady Rosetta, Musica and Spunta) with different origin. Scanning Electron Microscopy revealed significant differences between varieties and tuber microstructure changes following all cooking processes. Differential Scanning Calorimeter analysis showed that the transition temperatures (ranging between 60 °C and 85 °C) and enthalpies of gelatinization (2.1 J/g-3.9 J/g) of tubers were also variety dependent. In addition, the elasticity modulus of cooked samples depended on process type and followed the order: baked potatoes > boiled > fried potatoes. In particular, baked Lady Rosetta (224.3 kPa) showed the least decrease in rigidity between thermal processes. Fried Agria and Spunta, (56.3 and 61 kPa, respectively) had the smallest value of Young's modulus. Molecular marker analyses provided a genetic fingerprinting of our varieties, allowing the identification of diagnostic markers. Innovator revealed an important genetic distance from the other varieties. Such distance corresponded to its exclusive phenotypic traits, that are known to affect thermochemical properties. The information obtained in this work may be useful to further study and associate genetic sequences with appreciable food technological traits.


Assuntos
Culinária/métodos , Solanum tuberosum , Amido , Verduras , Temperatura Alta , Tubérculos/química , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Solanum tuberosum/ultraestrutura , Amido/análise , Amido/química , Amido/ultraestrutura , Verduras/química , Verduras/genética , Verduras/efeitos da radiação , Verduras/ultraestrutura
18.
Plant Physiol ; 177(1): 369-380, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555784

RESUMO

B-box (BBX) proteins are zinc-finger transcription factors containing one or two B-box motifs. BBX proteins act as key factors in the networks regulating growth and development. The relevance of BBX21 to light and abscisic acid signaling in seedling development is well established; however, its importance in adult plant development and agronomic species is poorly understood. Therefore, we studied the effect of heterologous expression of Arabidopsis (Arabidopsis thaliana) BBX21 in potato (Solanum tuberosum) var Spunta. Three independent AtBBX21-expressing lines and the wild-type control were cultivated under sunlight and at controlled temperatures in a greenhouse. By anatomical, physiological, biochemical, and gene expression analysis, we demonstrated that AtBBX21-expressing plants were more robust and produced more tubers than wild-type plants. Interestingly, AtBBX21-expressing plants had higher rates of photosynthesis, with a significant increase in photosynthetic gene expression, and higher stomatal conductance, with increased size of the stomatal opening, without any associated decline in water use efficiency. Furthermore, AtBBX21-expressing potato plants had reduced photoinhibition associated with higher production of anthocyanins and phenolic compounds, and higher expression of genes in the phenylpropanoid biosynthesis pathway. To gain insights into the mechanism of BBX21, we evaluated the molecular, morphological, metabolic, and photosynthetic behavior in adult BBX21-overexpressing Arabidopsis. We conclude that BBX21 overexpression improved morphological and physiological attributes, and photosynthetic rates in nonoptimal, high-irradiance conditions, without associated impairment of water use efficiency. These characteristics of BBX21 may be useful for increasing production of potatoes, and potentially of other crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fotossíntese/efeitos da radiação , Solanum tuberosum/fisiologia , Solanum tuberosum/efeitos da radiação , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenóis/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Transdução de Sinais , Solanum tuberosum/genética
19.
Planta ; 247(6): 1377-1392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520461

RESUMO

MAIN CONCLUSION: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.


Assuntos
Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Termotolerância , Parede Celular/metabolismo , Montagem e Desmontagem da Cromatina , Eletrólitos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genótipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Metabolômica , Oxirredução , Fenótipo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Termotolerância/genética , Termotolerância/efeitos da radiação
20.
J Sci Food Agric ; 98(4): 1485-1491, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28799645

RESUMO

BACKGROUND: Fried potato is one of the most consumed products in the world. Due to consumers' growing tendency to use healthy and low-fat foods, reducing oil content in fried foods has become a necessity. Several studies have shown that higher initial water content results in increased oil uptake during frying. Therefore, pretreatments that reduce water content of the product could lower oil uptake in the final product. The aim of this study was to evaluate the influence of a three-stage hybrid ultrasound-osmotic-frying process on production of low-fat fried potato strips. RESULTS: Results showed that, compared to control samples, osmotic pretreated samples using saline solutions at concentrations of 2% and 4% decreased oil uptake by 29.5% and 32.7%, respectively. Ultrasound (28 and 40 kHz) also showed a significant synergistic effect on reducing oil uptake in the samples pretreated with both ultrasound and osmotic dehydration so that different samples pretreated with both ultrasound and osmotic dehydration decreased oil uptake from approximately 40% to more than 50%, compared to untreated control samples. CONCLUSION: Owing to production of low-fat fried potato strips, utilising osmotic dehydration pretreatment was desirable before the frying process. Regarding low mass transfer rate during osmotic treatment, ultrasound was applied to enhance mass transfer rate. The use of ultrasound pretreatment in the frying process can yield promising results in reducing oil uptake. © 2017 Society of Chemical Industry.


Assuntos
Culinária/métodos , Gorduras/análise , Solanum tuberosum/química , Ultrassom/métodos , Culinária/instrumentação , Temperatura Alta , Osmose , Solanum tuberosum/efeitos da radiação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...