Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.883
Filtrar
1.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
2.
Curr Top Dev Biol ; 159: 310-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729680

RESUMO

External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.


Assuntos
Padronização Corporal , Vertebrados , Animais , Vertebrados/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Somitos/embriologia
3.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752392

RESUMO

The patterning of somites is coordinated by presomitic mesoderm cells through synchronised oscillations of Notch signalling, creating sequential waves of gene expression that propagate from the posterior to the anterior end of the tissue. In a new study, Klepstad and Marcon propose a new theoretical framework that recapitulates the dynamics of mouse somitogenesis observed in vivo and in vitro. To learn more about the story behind the paper, we caught up with first author Julie Klepstad and corresponding author Luciano Marcon, Principal Investigator at the Andalusian Center for Developmental Biology.


Assuntos
Biologia do Desenvolvimento , Animais , Biologia do Desenvolvimento/história , Camundongos , Somitos/embriologia , Somitos/metabolismo , História do Século XXI , Humanos , Padronização Corporal/genética , História do Século XX , Receptores Notch/metabolismo , Receptores Notch/genética
4.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727565

RESUMO

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Somitos , Animais , Desenvolvimento Embrionário/genética , Humanos , Somitos/metabolismo , Somitos/embriologia , Desenvolvimento Muscular/genética , Neurogênese/genética , Neurogênese/fisiologia , Pâncreas/embriologia , Pâncreas/metabolismo , Diferenciação Celular/genética
5.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742434

RESUMO

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Assuntos
Receptores Notch , Somitos , Animais , Camundongos , Somitos/embriologia , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Padronização Corporal/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Relógios Biológicos/fisiologia
6.
PLoS One ; 19(4): e0297853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635504

RESUMO

During vertebrate embryo development, the body is progressively segmented along the anterior-posterior (A-P) axis early in development. The rate of somite formation is controlled by the somitogenesis embryo clock (EC), which was first described as gene expression oscillations of hairy1 (hes4) in the presomitic mesoderm of chick embryos with 15-20 somites. Here, the EC displays the same periodicity as somite formation, 90 min, whereas the posterior-most somites (44-52) only arise every 150 minutes, matched by a corresponding slower pace of the EC. Evidence suggests that the rostral-most somites are formed faster, however, their periodicity and the EC expression dynamics in these early stages are unknown. In this study, we used time-lapse imaging of chicken embryos from primitive streak to somitogenesis stages with high temporal resolution (3-minute intervals). We measured the length between the anterior-most and the last formed somitic clefts in each captured frame and developed a simple algorithm to automatically infer both the length and time of formation of each somite. We found that the occipital somites (up to somite 5) form at an average rate of 75 minutes, while somites 6 onwards are formed approximately every 90 minutes. We also assessed the expression dynamics of hairy1 using half-embryo explants cultured for different periods of time. This showed that EC hairy1 expression is highly dynamic prior to somitogenesis and assumes a clear oscillatory behaviour as the first somites are formed. Importantly, using ex ovo culture and live-imaging techniques, we showed that the hairy1 expression pattern recapitulates with the formation of each new pair of somites, indicating that somite segmentation is coupled with EC oscillations since the onset of somitogenesis.


Assuntos
Proteínas Aviárias , Somitos , Animais , Embrião de Galinha , Galinhas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Aviárias/genética , Mesoderma/metabolismo
7.
Curr Top Dev Biol ; 157: 43-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556458

RESUMO

In avian and mammalian embryos the "organizer" property associated with neural induction of competent ectoderm into a neural plate and its subsequent patterning into rostro-caudal domains resides at the tip of the primitive streak before neurulation begins, and before a morphological Hensen's node is discernible. The same region and its later derivatives (like the notochord) also have the ability to "dorsalize" the adjacent mesoderm, for example by converting lateral plate mesoderm into paraxial (pre-somitic) mesoderm. Both neural induction and dorsalization of the mesoderm involve inhibition of BMP, and the former also requires other signals. This review surveys the key experiments done to elucidate the functions of the organizer and the mechanisms of neural induction in amniotes. We conclude that the mechanisms of neural induction in amniotes and anamniotes are likely to be largely the same; apparent differences are likely to be due to differences in experimental approaches dictated by embryo topology and other practical constraints. We also discuss the relationships between "neural induction" assessed by grafts of the organizer and normal neural plate development, as well as how neural induction relates to the generation of neuronal cells from embryonic and other stem cells in vitro.


Assuntos
Mesoderma , Somitos , Animais , Indução Embrionária/fisiologia , Aves , Mamíferos
8.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355799

RESUMO

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Assuntos
Animais Recém-Nascidos , Embrião de Mamíferos , Desenvolvimento Embrionário , Gástrula , Análise de Célula Única , Imagem com Lapso de Tempo , Animais , Feminino , Camundongos , Gravidez , Animais Recém-Nascidos/embriologia , Animais Recém-Nascidos/genética , Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Gástrula/citologia , Gástrula/embriologia , Gastrulação/genética , Rim/citologia , Rim/embriologia , Mesoderma/citologia , Mesoderma/enzimologia , Neurônios/citologia , Neurônios/metabolismo , Retina/citologia , Retina/embriologia , Somitos/citologia , Somitos/embriologia , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Especificidade de Órgãos/genética
9.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345319

RESUMO

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Cromatina/metabolismo , Expressão Gênica , Mesoderma/metabolismo , Somitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
10.
Sci Adv ; 10(4): eadk8937, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277458

RESUMO

Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.


Assuntos
Padronização Corporal , Somitos , Animais , Mesoderma , Vertebrados , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento
12.
Elife ; 132024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193440

RESUMO

During embryonic development, the timing of events at the cellular level must be coordinated across multiple length scales to ensure the formation of a well-proportioned body plan. This is clear during somitogenesis, where progenitors must be allocated to the axis over time whilst maintaining a progenitor population for continued elaboration of the body plan. However, the relative importance of intrinsic and extrinsic signals in timing progenitor addition at the single-cell level is not yet understood. Heterochronic grafts from older to younger embryos have suggested a level of intrinsic timing whereby later staged cells contribute to more posterior portions of the axis. To determine the precise step at which cells are delayed, we performed single-cell transcriptomic analysis on heterochronic grafts of somite progenitors in the chicken embryo. This revealed a previously undescribed cell state within which heterochronic grafted cells are stalled. The delayed exit of older cells from this state correlates with expression of posterior Hox genes. Using grafting and explant culture, we find that both Hox gene expression and the migratory capabilities of progenitor populations are intrinsically regulated at the population level. However, by grafting varied sizes of tissue, we find that small heterochronic grafts disperse more readily and contribute to more anterior portions of the body axis while still maintaining Hox gene expression. This enhanced dispersion is not replicated in explant culture, suggesting that it is a consequence of interaction between host and donor tissue and thus extrinsic to the donor tissue. Therefore, we demonstrate that the timing of cell dispersion and resulting axis contribution is impacted by a combination of both intrinsic and extrinsic cues.


Assuntos
Sinais (Psicologia) , Somitos , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Vertebrados , Genes Homeobox
13.
J Pediatr Adolesc Gynecol ; 37(3): 353-359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246338

RESUMO

OBJECTIVE: To analyze the features of the epithelia coating neovaginas after vaginoplasty in women affected by Mayer-Rokitansky-Küster-Hauser syndrome STUDY DESIGN: We conducted a retrospective analysis of prospectively collected data. Women affected by Rokitansky syndrome who underwent neovaginal biopsy after vaginoplasty (McIndoe surgery, intestinal vaginoplasty, Vecchietti surgery, and Davydov surgery) were included. Macroscopic mucosal features were assessed through clinical examination and the Schilling test. Each biopsy specimen was prepared for examination by light microscopy and in some cases by scanning electron microscopy (SEM). RESULTS: Thirty-six patients (4 McIndoe, 2 intestinal vaginoplasty, 14 Vecchietti, and 16 Davydov) were included. All biopsies were performed without complications. In McIndoe's neovaginas, the mucosal microscopic features were similar to normal skin, with large areas of preserved epithelium, heterogeneous presence of dermal papillae, and superficial keratinization. The characteristics of the intestinal neovagina's surface were similar to those of a sigmoid colon, with well-shaped glands, cylindrical cells, and a secreting mucosa. In Vecchietti neovaginas, the surface the epithelium was flat and multilayered, highly similar to that of a normal vagina, with the presence of glycogen and superficial desquamation. On medium SEM magnification evaluation, the epithelium presented flattened polygonal cells. Finally, in Davydov neovaginas, none of the specimens had persistent mesothelial elements. The squamous neo-epithelium had regular aspects of differentiation with the presence of glycogen. At greater SEM magnification, microridges were evident, with a regular distribution. CONCLUSION: Each different technique of vaginoplasty leads to unique histological and structural features of the neovagina's mucosa. Knowledge of these elements must be the basis for the choice of the most appropriate intervention.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Ductos Paramesonéfricos , Vagina , Humanos , Feminino , Vagina/cirurgia , Vagina/anormalidades , Transtornos 46, XX do Desenvolvimento Sexual/cirurgia , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/cirurgia , Anormalidades Congênitas/cirurgia , Estudos Retrospectivos , Adolescente , Útero/anormalidades , Útero/cirurgia , Estruturas Criadas Cirurgicamente , Adulto , Epitélio/patologia , Adulto Jovem , Procedimentos de Cirurgia Plástica/métodos , Biópsia , Somitos/anormalidades , Microscopia Eletrônica de Varredura
14.
Dev Dyn ; 253(2): 204-214, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37688793

RESUMO

BACKGROUND: The segmented nature of the adult vertebral column is based on segmentation of the paraxial mesoderm during early embryogenesis. Disruptions to embryonic segmentation, whether caused by genetic lesions or environmental stress, result in adult vertebral pathologies. However, the mechanisms linking embryonic segmentation and the details of adult vertebral morphology are poorly understood. RESULTS: We induced border defects using two approaches in zebrafish: heat stress and misregulation of embryonic segmentation genes tbx6, mesp-ba, and ripply1. We assayed vertebral length, regularity, and polarity using microscopic and radiological imaging. In population studies, we find a correlation between specific embryonic border defects and specific vertebral defects, and within individual fish, we trace specific adult vertebral defects to specific embryonic border defects. CONCLUSIONS: Our data reveal that transient disruptions of embryonic segment border formation led to significant vertebral anomalies that persist through adulthood. The spacing of embryonic borders controls the length of the vertebra. The positions of embryonic borders control the positions of ribs and arches. Embryonic borders underlie fusions and divisions between adjacent spines and ribs. These data suggest that segment borders have a dominant role in vertebral development.


Assuntos
Coluna Vertebral , Peixe-Zebra , Animais , Coluna Vertebral/diagnóstico por imagem , Mesoderma , Proteínas de Peixe-Zebra , Desenvolvimento Embrionário , Somitos , Proteínas com Domínio T/genética
15.
Methods Mol Biol ; 2767: 115-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37843773

RESUMO

Paraxial mesoderm in the early embryo is segmented into epithelial blocks called somites that establish the metameric organization of the vertebrate body plan. Somites are sequentially formed from head to tail in a rhythmic manner controlled by an oscillating gene regulatory network known as the segmentation clock. We know very little about this important process during human development due to limited access to human embryos and ethical concerns. To bypass these difficulties, model systems derived from human pluripotent stem cells have been established. Here, we detail three protocols modeling different aspects of human paraxial mesoderm development in vitro: a 2D cell monolayer system recapitulating dynamics of the human segmentation clock, a 3D organoid system called "somitoid" supporting the simultaneous formation of somite-like structures, and another organoid system called "segmentoid" reconstituting in vivo-like hallmarks of somitogenesis. Together, these complementary model systems provide an excellent platform to decode somitogenesis and advance human developmental biology.


Assuntos
Mesoderma , Células-Tronco Pluripotentes , Animais , Humanos , Somitos , Vertebrados , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal
16.
J Morphol ; 285(1): e21665, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100740

RESUMO

In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.


Assuntos
Somitos , Coluna Vertebral , Animais , Diferenciação Celular , Morfogênese , Costelas
17.
J Exp Zool B Mol Dev Evol ; 342(4): 350-367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155515

RESUMO

In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Xenopus , Xenopus laevis , Animais , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Coluna Vertebral/metabolismo , Evolução Biológica , Somitos/metabolismo
18.
Med Sci (Paris) ; 39(12): 967-974, 2023 Dec.
Artigo em Francês | MEDLINE | ID: mdl-38108728

RESUMO

The somites are embryonic structures that give rise to the axial musculoskeletal system. In amniotes vertebrates, somites are composed of multipotent somitic cells that quickly compartmentalize into a dorsal dermomyotome and a ventral sclerotome. In the somites, the dermomyotome gives rise to skeletal muscle cells (the myotome) and the dorsal dermis (the dermatome), while the sclerotome gives rise to vertebrae, ribs, and dorsal tendons (the syndetome). The compartmentalization pattern differs in anamniotes, with the establishment of a primitive myotome that begins before somite formation while the LSF (lateral somitic frontier) give rise to both the sclerotome and the dermomyotome in Xenopus. In this synthesis, we describe the contribution of the LSF in establishing somitic lineages in Xenopus and propose a model that traces the evolutionary history of somites back to ancestral precursors associated with striated skeletal muscle.


Title: La frontière latérale somitique, source des cellules somitiques multipotentes chez le xénope. Abstract: Les somites sont des structures embryonnaires qui donnent naissance au système musculosquelettique axial. Chez les vertébrés amniotes, ils sont composés de cellules somitiques multipotentes et se compartimentent en dermomyotome et sclérotome. Chez les anamniotes, la compartimentation débute avant la formation des somites par la mise en place du myotome primitif tandis que la frontière latérale somitique (FLS) est à l'origine du dermomyotome et du sclérotome chez le xénope. Dans cette revue, nous décrivons le rôle de la FLS dans la mise en place des lignages somitiques et proposons un modèle qui retrace l'histoire évolutive des somites à partir de précurseurs ancestraux associés au muscle strié squelettique.


Assuntos
Mesoderma , Somitos , Humanos , Animais , Xenopus laevis , Músculo Esquelético , Evolução Biológica
19.
Nat Commun ; 14(1): 6497, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838784

RESUMO

Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Somitos/metabolismo , Fenótipo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética
20.
STAR Protoc ; 4(4): 102573, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37721864

RESUMO

The field of stem cell-based embryo-like models is rapidly evolving, providing in vitro models of in utero stages of mammalian development. Here, we detail steps to first establish adherent spheroids composed of three cell types from mouse embryonic stem cells solely treated with a chemical inhibitor of SUMOylation. We then describe procedures for generating highly reproducible gastruloids from these dissociated spheroid cells, as well as embryo-like structures comprising anterior neural and trunk somite-like regions using an optimized microfluidics platform. For complete details on the use and execution of this protocol, please refer to Cossec et al. (2023).1.


Assuntos
Células-Tronco Embrionárias Murinas , Sumoilação , Animais , Camundongos , Embrião de Mamíferos , Microfluídica , Somitos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...