Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
2.
Curr Top Dev Biol ; 159: 310-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729680

RESUMO

External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.


Assuntos
Padronização Corporal , Vertebrados , Animais , Vertebrados/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Somitos/embriologia
3.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727565

RESUMO

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Somitos , Animais , Desenvolvimento Embrionário/genética , Humanos , Somitos/metabolismo , Somitos/embriologia , Desenvolvimento Muscular/genética , Neurogênese/genética , Neurogênese/fisiologia , Pâncreas/embriologia , Pâncreas/metabolismo , Diferenciação Celular/genética
4.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355799

RESUMO

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Assuntos
Animais Recém-Nascidos , Embrião de Mamíferos , Desenvolvimento Embrionário , Gástrula , Análise de Célula Única , Imagem com Lapso de Tempo , Animais , Feminino , Camundongos , Gravidez , Animais Recém-Nascidos/embriologia , Animais Recém-Nascidos/genética , Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Gástrula/citologia , Gástrula/embriologia , Gastrulação/genética , Rim/citologia , Rim/embriologia , Mesoderma/citologia , Mesoderma/enzimologia , Neurônios/citologia , Neurônios/metabolismo , Retina/citologia , Retina/embriologia , Somitos/citologia , Somitos/embriologia , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Especificidade de Órgãos/genética
5.
Nature ; 613(7942): 153-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517597

RESUMO

Sequential segmentation creates modular body plans of diverse metazoan embryos1-4. Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation4. However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1-Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish5. Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species3,4,6-8. Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients.


Assuntos
Padronização Corporal , MAP Quinases Reguladas por Sinal Extracelular , Periodicidade , Somitos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Somitos/efeitos dos fármacos , Somitos/embriologia , Somitos/enzimologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , Relógios Biológicos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
6.
Nature ; 614(7948): 500-508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543321

RESUMO

The vertebrate body displays a segmental organization that is most conspicuous in the periodic organization of the vertebral column and peripheral nerves. This metameric organization is first implemented when somites, which contain the precursors of skeletal muscles and vertebrae, are rhythmically generated from the presomitic mesoderm. Somites then become subdivided into anterior and posterior compartments that are essential for vertebral formation and segmental patterning of the peripheral nervous system1-4. How this key somitic subdivision is established remains poorly understood. Here we introduce three-dimensional culture systems of human pluripotent stem cells called somitoids and segmentoids, which recapitulate the formation of somite-like structures with anteroposterior identity. We identify a key function of the segmentation clock in converting temporal rhythmicity into the spatial regularity of anterior and posterior somitic compartments. We show that an initial 'salt and pepper' expression of the segmentation gene MESP2 in the newly formed segment is transformed into compartments of anterior and posterior identity through an active cell-sorting mechanism. Our research demonstrates that the major patterning modules that are involved in somitogenesis, including the clock and wavefront, anteroposterior polarity patterning and somite epithelialization, can be dissociated and operate independently in our in vitro systems. Together, we define a framework for the symmetry-breaking process that initiates somite polarity patterning. Our work provides a platform for decoding general principles of somitogenesis and advancing knowledge of human development.


Assuntos
Padronização Corporal , Técnicas de Cultura de Células em Três Dimensões , Somitos , Humanos , Técnicas In Vitro , Somitos/citologia , Somitos/embriologia , Somitos/metabolismo , Coluna Vertebral/citologia , Coluna Vertebral/embriologia , Relógios Biológicos , Epitélio/embriologia
7.
Nature ; 614(7948): 509-520, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543322

RESUMO

The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.


Assuntos
Padronização Corporal , Técnicas de Cultura de Células em Três Dimensões , Somitos , Humanos , Padronização Corporal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Somitos/citologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Somitos/metabolismo , Doenças da Coluna Vertebral/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
8.
Nature ; 610(7930): 143-153, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007540

RESUMO

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Assuntos
Embrião de Mamíferos , Gastrulação , Modelos Biológicos , Neurulação , Organogênese , Animais , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Endoderma/citologia , Endoderma/embriologia , Coração/embriologia , Mesencéfalo/embriologia , Camundongos , Tubo Neural/embriologia , Fator de Transcrição PAX6/deficiência , Fator de Transcrição PAX6/genética , Prosencéfalo/embriologia , Somitos/embriologia
9.
Nat Commun ; 12(1): 3851, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158501

RESUMO

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Assuntos
Padronização Corporal/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Somitos/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Embrião de Galinha , Extremidades/embriologia , Fibroblastos/citologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/citologia , Somitos/embriologia
11.
Dev Biol ; 469: 68-79, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080252

RESUMO

MicroRNAs (miRNAs), short non-coding RNAs, which act post-transcriptionally to regulate gene expression, are of widespread significance during development and disease, including muscle disease. Advances in sequencing technology and bioinformatics led to the identification of a large number of miRNAs in vertebrates and other species, however, for many of these miRNAs specific roles have not yet been determined. LNA in situ hybridisation has revealed expression patterns of somite-enriched miRNAs, here we focus on characterising the functions of miR-128. We show that antagomiR-mediated knockdown (KD) of miR-128 in developing chick somites has a negative impact on skeletal myogenesis. Computational analysis identified the transcription factor EYA4 as a candidate target consistent with the observation that miR-128 and EYA4 display similar expression profiles. Luciferase assays confirmed that miR-128 interacts with the EYA4 3'UTR. In vivo experiments also suggest that EYA4 is regulated by miR-128. EYA4 is a member of the PAX-SIX-EYA-DACH (PSED) network of transcription factors. Therefore, we identified additional candidate miRNA binding sites in the 3'UTR of SIX1/4, EYA1/2/3 and DACH1. Using the miRanda algorithm, we found sites for miR-128, as well as for other myogenic miRNAs, miR-1a, miR-206 and miR-133a, some of these were experimentally confirmed as functional miRNA target sites. Our results reveal that miR-128 is involved in regulating skeletal myogenesis by directly targeting EYA4 with indirect effects on other PSED members, including SIX4 and PAX3. Hence, the inhibitory effect on myogenesis observed after miR-128 knockdown was rescued by concomitant knockdown of PAX3. Moreover, we show that the PSED network of transcription factors is co-regulated by multiple muscle-enriched microRNAs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Embrião de Galinha , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Somitos/embriologia , Somitos/metabolismo , Fatores de Transcrição/metabolismo
12.
STAR Protoc ; 1(3): 100158, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377052

RESUMO

This protocol describes the use of CRISPR/Cas9-mediated homology-directed recombination to construct a PAX7-GFP reporter in human pluripotent stem cells (hPSCs). PAX7 is a key transcription factor and regulator of skeletal muscle stem/progenitor cells. We obtained heterozygous knockin reporter cells and validated their PAX7 expression using both artificial activation by the CRISPR/dCas9-VPR system and physiological activation during hPSC myogenic differentiation. These cells can serve as tools for better understanding of in vitro hPSC myogenesis and enriching myogenic cells for downstream analysis. For complete details on the use and execution of this protocol, please refer to Xi et al. (2017) and Xi et al. (2020).


Assuntos
Genes Reporter , Desenvolvimento Muscular , Fator de Transcrição PAX7/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Contagem de Células , Diferenciação Celular , Sequência Conservada , Resistência Microbiana a Medicamentos , Genótipo , Humanos , Mamíferos , Mesoderma/embriologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição PAX7/química , Plasmídeos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA Guia de Cinetoplastídeos/genética , Reprodutibilidade dos Testes , Somitos/embriologia
13.
Science ; 370(6522)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303587

RESUMO

Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Tubo Neural/embriologia , Somitos/embriologia , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteínas com Domínio T/genética , Proteínas Wnt/antagonistas & inibidores
14.
Exp Mol Med ; 52(8): 1166-1177, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788657

RESUMO

Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal-epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications.


Assuntos
Osso e Ossos/patologia , Mesoderma/embriologia , Cicatrização , Animais , Desenvolvimento Ósseo , Humanos , Células-Tronco Pluripotentes/metabolismo , Somitos/embriologia
15.
J Anat ; 237(3): 427-438, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786168

RESUMO

Trunk muscles in vertebrates are classified as either dorsal epaxial or ventral hypaxial muscles. Epaxial and hypaxial muscles are defined as muscles innervated by the dorsal and ventral rami of spinal nerves, respectively. Each cluster of spinal motor neurons passing through dorsal rami innervates epaxial muscles, whereas clusters traveling on the ventral rami innervate hypaxial muscles. Herein, we show that some motor neurons exhibiting molecular profiles for epaxial muscles follow a path in the ventral rami. Dorsal deep-shoulder muscles and some body wall muscles are defined as hypaxial due to innervation via the ventral rami, but a part of these ventral rami has the molecular profile of motor neurons that innervate epaxial muscles. Thus, the epaxial and hypaxial boundary cannot be determined simply by the ramification pattern of spinal nerves. We propose that, although muscle innervation occurs via the ventral rami, dorsal deep-shoulder muscles and some body wall muscles represent an intermediate group that lies between epaxial and hypaxial muscles.


Assuntos
Neurônios Motores/citologia , Músculo Esquelético/inervação , Somitos/inervação , Nervos Espinhais/embriologia , Animais , Padronização Corporal , Embrião de Galinha , Coturnix , Músculo Esquelético/embriologia , Tubo Neural , Somitos/embriologia , Tronco/embriologia , Tronco/inervação
16.
Nature ; 582(7812): 410-415, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528178

RESUMO

The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.


Assuntos
Padronização Corporal , Gástrula/citologia , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Organoides/embriologia , Somitos/citologia , Somitos/embriologia , Padronização Corporal/genética , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Organoides/metabolismo , Transdução de Sinais , Somitos/metabolismo , Transcriptoma
17.
Semin Cell Dev Biol ; 107: 170-178, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32444288

RESUMO

The body axis of vertebrates is subdivided into repetitive compartments called somites, which give rise primarily to the segmented architecture of the musculoskeletal system in the adult body. Somites form in a sequential and rhythmic manner in embryos and a physical boundary separates each somite from the rest of the unsegmented tissue and adjoining somites. Precise positioning of somite boundaries and determination of boundary cell fate in a select group of cells is thought to be driven by gene expression patterns and morphogen gradients. This pre-patterning step is followed by a mechanical process involving actomyosin activation in boundary cells and formation of an extracellular matrix that results in morphological boundary formation. While genes involved in somite boundary formation have been identified, there are many open questions about the underlying pre-patterning dynamics and mechanics and how these processes are coupled to generate a morphological boundary. Here, focusing on segmentation of zebrafish embryos as a model, we review pre-patterning processes critical for boundary formation and how cytoskeletal activity drives tissue separation. Our outlook is that this system holds exciting new avenues for unearthing general principles of boundary formation in developing embryos.


Assuntos
Embrião não Mamífero/metabolismo , Somitos/embriologia , Peixe-Zebra/embriologia , Animais , Evolução Biológica , Padronização Corporal/genética , Modelos Biológicos
18.
Elife ; 92020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32452761

RESUMO

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.


Assuntos
Orientação de Axônios/fisiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Transdução de Sinais , Animais , Astrócitos/fisiologia , Linhagem Celular , Embrião de Galinha , Galinhas , Biologia do Desenvolvimento , Técnicas de Silenciamento de Genes , Cones de Crescimento/fisiologia , Humanos , Proteínas de Membrana/genética , Neurociências , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Ratos , Somitos/embriologia , Somitos/fisiologia , Nervos Espinhais/embriologia , Nervos Espinhais/fisiologia
19.
Nature ; 582(7812): 405-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076263

RESUMO

Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization1-3. To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


Assuntos
Gástrula , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Análise de Célula Única , Somitos/citologia , Somitos/embriologia , Transcriptoma , Animais , Colágeno , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Proteoglicanas , RNA-Seq , Somitos/metabolismo , Fatores de Tempo
20.
Dev Growth Differ ; 62(3): 177-187, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108939

RESUMO

Vertebrate segments called somites are generated by periodic segmentation of the presomitic mesoderm (PSM). In the most accepted theoretical model for somite segmentation, the clock and wavefront (CW) model, a clock that ticks to determine particular timings and a wavefront that moves posteriorly are presented in the PSM, and somite positions are determined when the clock meets the posteriorly moving wavefront somewhere in the PSM. Over the last two decades, it has been revealed that the molecular mechanism of the clock and wavefront in vertebrates is based on clock genes including Hes family transcription factors and Notch effectors that oscillate within the PSM to determine particular timings and fibroblast growth factor (FGF) gradients, acting as the posteriorly moving wavefront to determine the position of somite segmentation. A clock-less condition in the CW model was predicted to form no somites; however, irregularly sized somites were still formed in mice and zebrafish, suggesting that this was one of the limitations of the CW model. Recently, we performed interdisciplinary research of experimental and theoretical biological studies and revealed the mechanisms of somite boundary determination in normal and clock-less conditions by characterization of the FGF/extracellular signal-regulated kinase (ERK) activity dynamics. Since features of the molecular clock have already been described in-depth in several reviews, we summarized recent findings regarding the role of FGF/ERK signaling in somite boundary formation and described our current understanding of how FGF/ERK signaling contributes to somitogenesis in normal and clock-less conditions in this review.


Assuntos
Padronização Corporal , Modelos Biológicos , Somitos/embriologia , Somitos/metabolismo , Vertebrados/embriologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...