Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589594

RESUMO

MOTIVATION: Sphagnum-dominated peatlands store a substantial amount of terrestrial carbon. The genus is undersampled and under-studied. No experimental crystal structure from any Sphagnum species exists in the Protein Data Bank and fewer than 200 Sphagnum-related genes have structural models available in the AlphaFold Protein Structure Database. Tools and resources are needed to help bridge these gaps, and to enable the analysis of other structural proteomes now made possible by accurate structure prediction. RESULTS: We present the predicted structural proteome (25 134 primary transcripts) of Sphagnum divinum computed using AlphaFold, structural alignment results of all high-confidence models against an annotated nonredundant crystallographic database of over 90,000 structures, a structure-based classification of putative Enzyme Commission (EC) numbers across this proteome, and the computational method to perform this proteome-scale structure-based annotation. AVAILABILITY AND IMPLEMENTATION: All data and code are available in public repositories, detailed at https://github.com/BSDExabio/SAFA. The structural models of the S. divinum proteome have been deposited in the ModelArchive repository at https://modelarchive.org/doi/10.5452/ma-ornl-sphdiv.


Assuntos
Proteínas de Plantas , Proteoma , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/enzimologia , Proteínas de Plantas/química , Fluxo de Trabalho , Homologia Estrutural de Proteína
2.
Sci Rep ; 13(1): 7971, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198446

RESUMO

Peatlands in southern South America (Tierra del Fuego region, TdF) play a key role in the ecological dynamics of Patagonia. It is, therefore, necessary to increase our knowledge and awareness of their scientific and ecological value to ensure their conservation. This study aimed to assess the differences in the distribution and accumulation of elements in peat deposits and Sphagnum moss from the TdF. Chemical and morphological characterization of the samples was carried out using various analytical techniques, and total levels of 53 elements were determined. Furthermore, a chemometric differentiation based on the elemental content of peat and moss samples was performed. Some elements (Cs, Hf, K, Li, Mn, Na, Pb, Rb, Si, Sn, Ti and Zn) showed significantly higher contents in moss samples than in peat samples. In contrast, only Mo, S and Zr were significantly higher in peat samples than in moss samples. The results obtained highlight the ability of moss to accumulate elements and to act as a means to facilitate the entry of elements into peat samples. The valuable data obtained in this multi-methodological baseline survey can be used for more effective conservation of biodiversity and preservation of the ecosystem services of the TdF.


Assuntos
Briófitas , Sphagnopsida , Ecossistema , Sequestro de Carbono , Monitoramento Ambiental/métodos , Sphagnopsida/química , Solo , Carbono
3.
Environ Sci Technol ; 56(22): 15661-15671, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326287

RESUMO

The smallest fraction of plastic pollution, submicron plastics (SMPs <1 µm) are expected to be ubiquitous in the environment. No information is available about SMPs in peatlands, which have a key role in sequestering carbon in terrestrial ecosystems. It is unknown how these plastic particles might behave and interact with (micro)organisms in these ecosystems. Here, we show that the chemical composition of polystyrene (PS) and poly(vinyl chloride) (PVC)-SMPs influenced their adsorption to peat. Consequently, this influenced the accumualtion of SMPs by Sphagnum moss and the composition and diversity of the microbial communities in peatland. Natural organic matter (NOM), which adsorbs from the surrounding water to the surface of SMPs, decreased the adsorption of the particles to peat and their accumulation by Sphagnum moss. However, the presence of NOM on SMPs significantly altered the bacterial community structure compared to SMPs without NOM. Our findings show that peatland ecosystems can potentially adsorb plastic particles. This can not only impact mosses themselves but also change the local microbial communities.


Assuntos
Microbiota , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/microbiologia , Solo/química , Adsorção , Plásticos , Bactérias
4.
PLoS One ; 17(2): e0252743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108267

RESUMO

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone ("PVP"), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog-62 ± 16%-than the fen-14 ± 4%. This difference was found to be more substantial with regards to methane production-wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs' extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.


Assuntos
Carbono/metabolismo , Fenóis/química , Sphagnopsida/metabolismo , Anaerobiose , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cinética , Metano/química , Metano/metabolismo , Pergelissolo , Povidona/química , Sphagnopsida/química
5.
Bull Exp Biol Med ; 170(4): 461-465, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33713226

RESUMO

Humic acids extracted with sodium pyrophosphate from Oligotrophic Sphagnum magellanicum peat reduce mitogen-stimulated production of anti-inflammatory cytokine IL-10 by mouse peritoneal macrophages and do not affect the secretion of IL-4 by lymphocytes. The studied humic acid sample stimulates the production of proinflammatory cytokines IL-12, TNFα, IL-1ß, and IFNγ by immunocompetent mouse cells and human mononuclear cells. Course administration of humic acids to mice enhances the humoral immunity, increasing the number of antibody-forming cells in the spleen and the titer of antibodies in the blood serum after immunization with sheep red blood cells.


Assuntos
Substâncias Húmicas , Solo , Animais , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Sphagnopsida/química , Fator de Necrose Tumoral alfa/metabolismo
6.
Photochem Photobiol Sci ; 20(3): 379-389, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721276

RESUMO

Bryophytes, including Sphagnum, are common species in alpine and boreal regions especially on mires, where full sunlight exposes the plants to the damaging effects of UV radiation. Sphagnum species containing UV-protecting compounds might offer a biomass source for nature-based sunscreens to replace the synthetic ones. In this study, potential compounds and those linked in cell wall structures were obtained by using methanol and alkali extractions and the UV absorption of these extracts from three common Sphagnum moss species Sphagnum magellanicum, Sphagnum fuscum and Sphagnum fallax collected in spring and autumn from western Finland are described. Absorption spectrum screening (200-900 nm) and luminescent biosensor (Escherichia coli DPD2794) methodology were used to examine and compare the protection against UV radiation. Additionally, the antioxidant potential was evaluated using hydrogen peroxide scavenging (SCAV), oxygen radical absorbance capacity (ORAC) and ferric reducing absorbance capacity (FRAP). Total phenolic content was also determined using the Folin-Ciocalteu method. The results showed that methanol extractable compounds gave higher UV absorption with the used methods. Sphagnum fallax appeared to give the highest absorption in UV-B and UV-A wavelengths. In all assays except the SCAV test, the methanol extracts of Sphagnum samples collected in autumn indicated the highest antioxidant capacity and polyphenol content. Sphagnum fuscum implied the highest antioxidant capacity and phenolic content. There was low antioxidant and UV absorption provided by the alkali extracts of these three species.


Assuntos
Extratos Vegetais/química , Sphagnopsida/química , Raios Ultravioleta , Antioxidantes/química , Técnicas Biossensoriais , Dano ao DNA/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/química , Extratos Vegetais/análise , Polifenóis/análise , Polifenóis/química , Estações do Ano , Espectrofotometria , Sphagnopsida/metabolismo
7.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573075

RESUMO

Anthocyanins with various functions in nature are one of the most important sources of colours in plants. They are based on anthocyanidins or 3-deoxyanthocyanidins having in common a C15-skeleton and are unique in terms of how each anthocyanidin is involved in a network of equilibria between different forms exhibiting their own properties including colour. Sphagnorubin C (1) isolated from the cell wall of peat moss (Sphagnum sp.) was in fairly acidic and neutral dimethyl sulfoxide characterized by nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis) absorption techniques. At equilibrium, the network of 1 behaved as a two-component colour system involving the reddish flavylium cationic and the yellow trans-chalcone forms. The additional D- and E-rings connected to the common C15-skeleton extend the π-conjugation within the molecule and provide both bathochromic shifts in the absorption spectra of the various forms as well as a low isomerization barrier between the cis- and trans-chalcone forms. The hemiketal and cis-chalcone forms were thus not observed experimentally by NMR due to their short lives. The stable, reversible network of 1 with good colour contrast between its two components has previously not been reported for other natural anthocyanins and might thus have potential in future photochromic systems. This is the first full structural characterization of any naturally occurring anthocyanin chalcone form.


Assuntos
Antocianinas/química , Chalcona/química , Sphagnopsida/química , Antocianinas/genética , Cor , Isomerismo , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pigmentação/genética , Sphagnopsida/genética
8.
Bull Exp Biol Med ; 168(5): 651-653, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32246373

RESUMO

A course of treatment with humic acids extracted with sodium pyrophosphate from high-moor pine-peat moss-cotton grass peat improves humoral immune response of C57BL/6 mice, stimulates the production of TNFα, IL-1ß, and IL-12 by the animal peritoneal macrophages and the production of IFNγ and TNFα by donor peripheral blood mononuclears, causing no changes in the production of IL-10 in vitro.


Assuntos
Citocinas/metabolismo , Substâncias Húmicas , Imunidade Humoral/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Substâncias Húmicas/análise , Imunidade Humoral/fisiologia , Imunocompetência/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pinus/química , Poaceae/química , Sphagnopsida/química
9.
Ecotoxicology ; 29(10): 1815-1829, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32037482

RESUMO

Mercury (Hg) is a potent neurotoxin that biomagnifies within both aquatic and terrestrial food webs resulting in adverse physiological and reproductive effects on impacted wildlife populations, including songbird communities. Due to reducing conditions, wetland ecosystems promote the formation of methylmercury. Regional studies have documented elevated blood mercury concentrations in songbird species within these habitat types. The overall goal of this research was to examine spatial and seasonal patterns of Hg exposure for targeted songbird species within Sphagnum bog wetland systems and compare these patterns with adjacent upland forests in the Adirondack Park of New York State. Project sampling was conducted at study plots within four Sphagnum bog and associated upland forest sites from May - August during the 2008, 2009, and 2011 field seasons. The overall results documented: (1) blood Hg concentrations were elevated in songbird species inhabiting Sphagnum bog habitats as compared to nearby upland forest species; (2) target species within each habitat type exhibited consistent species-level patterns in blood Hg concentrations at each study site; and (3) no seasonal change in blood Hg concentrations within Sphagnum bog habitats was documented, but an increasing, followed by a decreasing seasonal pattern in mercury exposure was detected for upland forest species. Habitat type was demonstrated to influence avian Hg exposure levels. Moreover, Sphagnum bog ecosystems may be contributing to elevated Hg concentrations in biota within the surrounding environment. Seasonal patterns for blood Hg concentrations were found to vary between habitat type and are likely related to a combination of variables including habitat-driven Hg concentrations in prey items, seasonal dietary shifts, and annual molting cycles. This project emphasizes the importance of prioritizing future research efforts within identified high Hg habitat types, specifically wetland systems, to better characterize associated avian exposure levels, estimate the spatial extent of wetland systems on the surrounding environment, and identify locations of potential biological hotspots across the Adirondack Park.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Mercúrio/análise , Aves Canoras , Sphagnopsida/química , Animais , New York , Áreas Alagadas
10.
Environ Sci Pollut Res Int ; 26(26): 26925-26938, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309420

RESUMO

In light of growing concern and insufficient knowledge on the negative impact of aircraft emissions on environmental health, this study strives to investigate the air burden of major and trace elements caused by general aviation, piston-engine, and turboprop aircraft, within the vicinity of Eskisehir Hasan Polatkan Airport (Eskisehir, Turkey). The levels of 57 elements were investigated, based on moss bag biomonitoring using Sphagnum sp., along with chemical analyses of lubrication oil and aviation gasoline fuel used in the aircraft's operations. Five sampling sites were selected within the vicinity of the airport area to capture spatial changes in the concentration of airborne elements. The study demonstrates that moss bag biomonitoring is a useful tool in the identification of differences in the air burden by major and trace elements that have concentrated downwind of the aircraft emission sources. Moreover, pollutant enrichment in the Sphagnum moss bags and elemental characterization of oil/fuel are in agreement suggesting that Pb, followed by Cd, Cu, Mo, Cr, Ni, Fe, Si, Zn, Na, P, Ca, Mg, and Al are dominant elements that shaped the general aviation aircraft emissions.


Assuntos
Poluentes Atmosféricos/análise , Aeronaves , Monitoramento Ambiental/métodos , Sphagnopsida/química , Aeroportos , Quelantes/análise , Gasolina , Turquia
11.
Chemosphere ; 236: 124375, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31344617

RESUMO

Although mosses are widely used for active biomonitoring of air pollution, a unified protocol for their treatment before exposure in bags is still lacking. Here we used field- and laboratory-grown Sphagnum palustre L. moss, respectively, treated by EDTA and devitalized by oven drying at 100 °C, to elaborate a consistent procedure of metal and proton adsorption on moss surfaces. Acid-base titrations and Pb2+ adsorption experiments at different pH values and Pb2+ concentrations in solution were performed with both field-collected and laboratory cloned mosses. Devitalization and EDTA treatments did not produce any measurable difference in terms of H+ and Pb2+ adsorption capacities of moss surfaces. The stability constants for Pb2+ adsorption onto moss surfaces as a function of pH (pH-dependent adsorption edge) and at constant pH (5.5 and 6.5) as a function of Pb2+ concentration ("langmuirian" adsorption isotherm) were rather similar between different treatments. A Linear Program Modeling (LPM) of adsorption reactions revealed high similarity of adsorption constants regardless of treatments for both field-grown and cloned mosses. Therefore, in view of the use of S. palustre clone for biomonitoring lead in the environment, we recommend devitalization at 100 °C as unique treatment to perform with the aim to preserve the biomonitor before and after its exposure in bags.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Biológico/métodos , Chumbo/química , Sphagnopsida/química , Adsorção , Poluição do Ar , Concentração de Íons de Hidrogênio , Temperatura
12.
Environ Pollut ; 250: 717-727, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31035154

RESUMO

Mullite, a pure aluminosilicate (Al6Si2O13), is a rare natural rock component, known for centuries as a very resistant ceramic material. It is also a common waste product of high-temperature coal combustion that is emitted in quantity from coal-based power stations. The occurrence of mullite in two Sphagnum-dominated peatlands located near the Upper Silesia industrial region in southern Poland is described. For the first time, a complete record of mullite deposition in the peat profiles has been obtained by XRD analyses of ashed peat samples. The mullite distribution is compared with records of Hg, Pb and Cu. While mullite is supplied during high temperature processes only, Cu, Pb and Hg show more complex pattern of distribution. Both peat profiles contain elevated amounts of mullite in the time span between ca 1950-1990 with a maximum content in ca 1980. The first appearance (∼1900) of mullite is indicative of the beginning of energy production in coal-based power plants in the region. Mullite is proposed here as an indicator of industrialization in geological records. It is resistant to post-depositional processes, emitted globally, and restricted to large-scale industry.


Assuntos
Poluentes Atmosféricos/análise , Silicatos de Alumínio/análise , Cerâmica/análise , Cinza de Carvão/análise , Solo/química , Sphagnopsida/química , Monitoramento Ambiental , Indústrias , Polônia , Centrais Elétricas , Sphagnopsida/crescimento & desenvolvimento
13.
Environ Geochem Health ; 41(4): 1637-1646, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28780675

RESUMO

Peat moss-derived biochars were produced at the pyrolytic temperatures of 300, 500, and 700 °C and were tested for evaluating the removal efficiency of volatile organic compounds (VOCs) from waters. As the pyrolytic temperature increases, the carbon contents were increased from 66 to 84%, and the contents of hydrogen and oxygen were decreased from 4 to 1% and from 19 to 4%, respectively. The surface areas of the biochars were 2 m2 g-1 at the pyrolysis temperature of 300 °C and were increased to 200 and 300 m2 g-1 at 500 and 700 °C, respectively. Results of FTIR analysis showed that functional groups such as hydroxyl, nitro, and carboxyl groups were observed in the biochar produced at 300 °C; however, the functional groups were removed in the biochars produced at higher temperatures. Sorption kinetics and equilibrium experiments were conducted with selected six VOCs of benzene (BZN), toluene (TOL), ethylbenzene (EBZ), p-xylene (pXYL), trichloroethylene (TCE), and tetrachloroethylene (PCE), which are the most common VOCs found in contaminated groundwater of South Korea. Sorption equilibrium was attained in 6 h with the constants of first order kinetic rate of 0.5 h-1 for the VOCs tested. Freundlich isotherm well described the adsorption of VOCs to the biochars. Biochar produced at 500 °C showed the highest sorption capacity for all VOCs with an average Kf of 7692 (±2265), although biochars produced at 300 °C (Kf = 3146 ± 629) and 700 °C (Kf = 2776 ± 2693) showed the similar sorption capacity. The biochars produced at 500 °C can be an excellent remover of VOCs in contaminated groundwater.


Assuntos
Carvão Vegetal/química , Sphagnopsida/química , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carbono/análise , Água Subterrânea/química , Hidrogênio/análise , Cinética , Oxigênio/análise , Pirólise , República da Coreia , Temperatura , Tricloroetileno/química , Tricloroetileno/isolamento & purificação , Compostos Orgânicos Voláteis/química , Poluentes Químicos da Água/química , Purificação da Água
14.
Sci Total Environ ; 650(Pt 1): 1652-1663, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017103

RESUMO

Trace elements in native cranberry (Vaccinium oxycoccus) were compared with the underlying Sphagnum moss on which it grows, from two remote ombrotrophic (rain-fed) peat bogs in northern Alberta, Canada. The purpose of the comparison was to distinguish between dust inputs to the berries versus plant uptake from the substrate, and to determine the natural abundance of trace elements in native berries. Using Al as an indicator of the abundance of soil-derived mineral particles, the abundance of dust on the surface of the berries is 20 to 29× lower than that of the substrate (moss). Other lithophile elements (V, Cr, Co, Ga, Li and Y) show similar differences between moss and berry. The concentrations of Rb and Ba in berries were similar to moss and Sr within a factor of 3 to 4×, probably reflecting passive uptake of these lithophile elements by the plants, even though they have no known physiological function. Of the micronutrients examined (Mn, Fe, Ni, Cu, Zn and Mo), Cu and Mn were more abundant in berries than moss, Ni and Zn yielded similar concentrations in both whereas Fe followed by Mo showed the greatest concentration difference. For these micronutrients, uptake by the plants through their roots via the substrate (moss and peat) outweighs contributions from atmospheric dusts. In respect to potentially toxic "heavy metals", Pb concentrations in the moss (BMW, 89 ±â€¯7.3 µg/kg; CMW, 93 ±â€¯27 µg/kg) are below the natural, "background" values reported for ancient layers of Swiss peat from the mid-Holocene (>6000 years old). The Pb concentrations in the berries, however, are 19 to 47× lower than in the underlying moss indicating that Pb in the berries, like Al, is exclusively supplied by dust. Cadmium in the berries is at or above the level found in moss due to active uptake by the plants from the substrate, most likely because of the chemical similarity of this element to Zn. Silver, Sb and Tl in the berries were

Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental , Oligoelementos/análise , Oligoelementos/metabolismo , Vaccinium/química , Vaccinium/metabolismo , Alberta , Poeira/análise , Solo/química , Sphagnopsida/química , Sphagnopsida/metabolismo , Áreas Alagadas
15.
J Environ Sci (China) ; 77: 264-272, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573090

RESUMO

Plant communities play an important role in the C-sink function of peatlands. However, global change and local perturbations are expected to modify peatland plant communities, leading to a shift from Sphagnum mosses to vascular plants. Most studies have focused on the direct effects of modification in plant communities or of global change (such as climate warming, N fertilization) in peatlands without considering interactions between these disturbances that may alter peatlands' C function. We set up a mesocosm experiment to investigate how Greenhouse Gas (CO2, CH4, N2O) fluxes, and dissolved organic carbon (DOC) and total dissolved N (TN) contents are affected by a shift from Sphagnum mosses to Molinia caerulea dominated peatlands combined with N fertilization. Increasing N deposition did not alter the C fluxes (CO2 exchanges, CH4 emissions) or DOC content. The lack of N effect on the C cycle seems due to the capacity of Sphagnum to efficiently immobilize N. Nevertheless, N supply increased the N2O emissions, which were also controlled by the plant communities with the presence of Molinia caerulea reducing N2O emissions in the Sphagnum mesocosms. Our study highlights the role of the vegetation composition on the C and N fluxes in peatlands and their responses to the N deposition. Future research should now consider the climate change in interaction to plants community modifications due to their controls of peatland sensitivity to environmental conditions.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Poaceae/química , Poaceae/efeitos dos fármacos , Sphagnopsida/química , Sphagnopsida/efeitos dos fármacos , Fertilizantes/análise , Fixação de Nitrogênio/efeitos dos fármacos
16.
J Chem Ecol ; 44(12): 1146-1157, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294748

RESUMO

Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.


Assuntos
Ericaceae/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Sphagnopsida/química , Cromatografia Líquida de Alta Pressão , Ecossistema , Ericaceae/microbiologia , Fenóis/análise , Fenóis/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Componente Principal , Estações do Ano , Solo/química , Espectrometria de Massas por Ionização por Electrospray , Sphagnopsida/metabolismo , Água/química
17.
Environ Sci Pollut Res Int ; 25(19): 18642-18650, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705896

RESUMO

The dynamics of polycyclic aromatic hydrocarbon (PAH) degradation in Sphagnum litters and the decomposition of the litters were investigated. PAH concentration decreased to approximately half of the initial concentration as Sphagnum litters decayed. The initial PAH concentration was 489.2 ± 72.2 ng g-1, and the concentration after 120 days of incubation was 233.0 ± 5.8 ng g-1. The different PAH compositions changed concentrations at different times. The low-molecular-weight (LMW) and high-molecular-weight (HMW) PAHs started to be degraded after incubation and after 40 days of incubation, respectively. PAH concentrations in the Sphagnum litters correlated with the total organic carbon (TOC) content (p < 0.05), indicating that PAHs were associated with the TOC of the Sphagnum litters and were degraded as organic matter decayed. The positive relationship between LMW PAH concentration and the soluble carbohydrate content (p < 0.05) indicated that LMW PAHs and the readily decomposed organic carbon fractions were cometabolized, or that LMW PAHs were mainly absorbed by soluble carbohydrate. The weak negative correlation between fulvic acid (FA) and PAH concentrations (p < 0.1) indicated that FA may enhance PAH degradation. Redundancy analysis suggested that the contents of both soluble carbohydrate and cellulose significantly affected the changes in PAH concentrations (p < 0.05), and that FA content and C/N ratios may also contribute to the changes in PAH concentrations (p < 0.1). However, the polyphenol that was related to microbial activities was not associated with changes in PAH concentrations. These results suggested that litter quality is more important than microbial activities in PAH degradation in Sphagnum litters.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Sphagnopsida/química , Resíduos , Benzopiranos/química , Biodegradação Ambiental , Cinética
18.
Georgian Med News ; (276): 182-186, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29697404

RESUMO

The objective of the research was development extraction process of humic substances from sphagnum peat peloids, selection of extragent and characterization of humic substances. The objects of the research: Kolkheti peat peloids (Ispani, Anaklia, Churia, Chirukhi, Peranga) of different formation phases. Research was held using modern instrumental methods of analysis: UV spectrophotometer, Scanning Electron Microscopy, Centrifuge, Dry oven, Ultraturax. In the research extraction process of humic substances from sphagnum peat peloids was developed and composition of humic substances was studied, also E4/E6 humification coefficient was evaluated. Based on the results extraction conditions of humic substances from the peat peloids samples were determined: a) extragent with maximum yield - 1.0N NaOH; b) mixing type - KA-ULTRA TURAX-T18 - 20 000 rpm/min; c) Precipitant of humic substances -10% HCL. Composition of humic substances are studied in the samples and their relatively high content is determined in Anaklia and Churia sphagnum peat peloids. For characterization of humic substances E4/E6 humification coefficient was evaluated. Low ration of E4/E6 < 5 was established in anaklia, churia and ispani peat peloids. High ration of E4/E6 < 10 coefficient is determined in chirukhi and peranga peat peloids.


Assuntos
Substâncias Húmicas/análise , Solo/química , Sphagnopsida/química
19.
Environ Pollut ; 237: 468-472, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29510366

RESUMO

Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, where ambient deposition was 8 kg N ha-1 yr-1, 56 kg N ha-1 yr-1 of either ammonium (NH4+, Nred) or nitrate (NO3-, Nox) with and without P and K, were added over 11 years. Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 years) and high doses (56 kg N ha-1 yr-1) of reduced N was not completely ameliorated by P and K addition; N concentrations in Sphagnum capitula for Nred 56 PK were comparable with those for Nred 56, although N concentrations in Sphagnum stems for Nred 56 PK were lower than those for Nred 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for Nred 56 PK were not different from Nred 56, they were lower for Nox 56 PK than for Nox 56 whose stage of N saturation had not advanced compared to Nred 56. These results indicate that increasing P and K availability has only a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of N saturation. This study concluded that over the long-term P and K additions will not offset the N saturation of Sphagnum.


Assuntos
Nitrogênio/análise , Fósforo/análise , Potássio/metabolismo , Sphagnopsida/química , Compostos de Amônio , Monitoramento Ambiental , Nitratos , Nitrogênio/metabolismo , Fósforo/metabolismo , Caules de Planta , Escócia , Sphagnopsida/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-29470433

RESUMO

Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr), copper (Cu), lead (Pb), vanadium (V), and zinc (Zn)) at five sampling sites (four roads and a forest park) during the summer and winter of 2012. According to the relative accumulation factor (RAF) and contamination factor (CF) results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation (p < 0.05) between traffic volume and concentration for three heavy metals (Cr, Cu, and V) in winter, whereas a significant positive correlation (p < 0.05) was observed between traffic volume and concentrations for four heavy metal elements (Cr, Pb, V, and Zn) in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Sphagnopsida/química , Emissões de Veículos/análise , China , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...