Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38632047

RESUMO

The endosymbiotic bacteria Spiroplasma (Mollicutes) infect diverse plants and arthropods, and some of which induce male killing, where male hosts are killed during development. Male-killing Spiroplasma strains belong to either the phylogenetically distant Citri-Poulsonii or Ixodetis groups. In Drosophila flies, Spiroplasma poulsonii induces male killing via the Spaid toxin. While Spiroplasma ixodetis infects a wide range of insects and arachnids, little is known about the genetic basis of S. ixodetis-induced male killing. Here, we analyzed the genome of S. ixodetis strains in the pea aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genome sequencing constructed a complete genome of a male-killing strain, sAp269, consisting of a 1.5 Mb circular chromosome and an 80 Kb plasmid. sAp269 encoded putative virulence factors containing either ankyrin repeat, ovarian tumor-like deubiquitinase, or ribosome inactivating protein domains, but lacked the Spaid toxin. Further comparative genomics of Spiroplasma strains in A. pisum biotypes adapted to different host plants revealed their phylogenetic associations and the diversity of putative virulence factors. Although the mechanisms of S. ixodetis-induced male killing in pea aphids remain elusive, this study underlines the dynamic genome evolution of S. ixodetis and proposes independent acquisition events of male-killing mechanisms in insects.


Assuntos
Afídeos , Genoma Bacteriano , Filogenia , Spiroplasma , Simbiose , Animais , Spiroplasma/genética , Spiroplasma/fisiologia , Spiroplasma/classificação , Afídeos/microbiologia , Masculino , Fenótipo , Genômica , Fatores de Virulência/genética , Feminino , Pisum sativum/microbiologia , Pisum sativum/parasitologia
2.
Mar Biotechnol (NY) ; 26(1): 116-124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170295

RESUMO

In recent years, a new type of Spiroplasma has been found that can cause "tremor disease" of the Chinese mitten crab Eriocheir sinensis. The outbreak of epidemic tremor disease has caused a serious setback in the Chinese mitten crab farming industry, with an incidence rate of more than 30% and mortality rates of 80-100%. Therefore, finding a sensitive method to detect tremor disease in E. sinensis has become a current research focus. In this research, a loop-mediated isothermal amplification detection method coupled with hydroxynaphthol blue dye (LAMP-HNB) was developed and used to rapidly detect Spiroplasma eriocheiris. First, we designed and synthesized specific outer primers, inner primers and loop primers based on the 16S ribosomal RNA gene of S. eriocheiris. Second, the LAMP-HNB detection method for S. eriocheiris was successfully established by screening the primers, adjusting the temperature and time of the reaction, and optimizing the concentrations of Mg2+ and dNTPs. In the specific tests, only samples infected with S. eriocheiris showed positive results, and other infections caused by bacteria and parasites tested negative, proving that the test has high specificity. Moreover, the detection limit was 2.5 × 10-6 ng/µL, indicating high sensitivity. This method for detecting S. eriocheiris provides rapid visual output based on LAMP-HNB detection and is a simple, fast, sensitive, and inexpensive method that can be applied to a wide range of field investigations.


Assuntos
Técnicas de Diagnóstico Molecular , Naftalenossulfonatos , Spiroplasma , Tremor , Humanos , Spiroplasma/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
Emerg Infect Dis ; 30(1): 187-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147505

RESUMO

We report a case of Spiroplasma bloodstream infection in a patient in China who developed pulmonary infection, acute respiratory distress syndrome, sepsis, and septic shock after emergency surgery for type A aortic dissection. One organism closely related to Spiroplasma eriocheiris was isolated from blood culture and identified by whole-genome sequencing.


Assuntos
Sepse , Spiroplasma , Humanos , Spiroplasma/genética , China/epidemiologia , Sepse/diagnóstico , Sepse/etiologia
4.
J Invertebr Pathol ; 201: 108017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926345

RESUMO

The tremor disease (TD) caused by Spiroplasma eriocheiris is the most destructive disease of the Chinese mitten crab, Eriocheir sinensis. This study attempts to construct Multienzyme Isothermal Rapid Amplification (MIRA), a quick and simple nucleic acid amplification method that operates at room temperature. Based on the gene sequences of S. eriocheiris, appropriate amplification primers were constructed and screened in this investigation. Both the relevant specific probe and the chosen specific amplification primers were designed and labeled. The MIRA and MIRA-LFD reaction conditions were then optimized. The result showed MIRA and MIRA-FFD could identify S. eriocheiris at 37 °C in 30 min and 15 min, respectively. To investigate the specificity of MIRA and MIRA-LFD, three Gram-negative bacteria (Bacillus subtilis, Bacillus thuringiensis, and Staphylococcus aureus), three Gram-positive bacteria (Escherichia coli, Aeromonas hydrophila, and Salmonella typhimurium) and S. eriocheiris were selected. The result showed MIRA and MIRA-LFD were highly specific to S. eriocheiris and did not react with other six pathogens. The sensitivities of PCR, MIRA, and MIRA-LFD were then evaluated. The result showed the detection limit of PCR is 1 ng/L whereas the detection limit of MIRA and MIRA-LFD is 10 pg/L. Finally, the established MIRA and MIRA-LFD detection methods had the advantages of being quick, sensitive, and specific for S. eriocheiris detection, as well as not requiring any specialized equipment.


Assuntos
Spiroplasma , Animais , Spiroplasma/genética , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico
5.
Microb Pathog ; 184: 106365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741306

RESUMO

Spiroplasma eriocheiris is one of the major pathogenic bacteria in crustaceans, featuring high infectivity, rapid transmission, and an absence of effective control strategies, resulting in significant economic losses to the aquaculture industry. Research into virulence-related factors provides an important perspective to clarify how Spiroplasma eriocheiris is pathogenic to shrimps and crabs. Therefore, in this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was utilized to undertake a differential proteomic analysis of high- and low-virulence Spiroplasma eriocheiris strains at different growth phases. A total of 868 differentially expressed proteins (DEPs) were obtained, of which 31 novel proteins were identified by proteogenomic analysis. There were 62, 61, 175, and 235 DEPs between the log phase (YD) and non-log phase (YFD) of the high-virulence strain, between the log phase (CD) and non-log phase (CFD) of the low-virulence strain, between YD and CD, and between CFD and YFD, respectively. All the DEPs were compared with virulence protein databases (MvirDB and VFDB), and 68 virulence proteins of Spiroplasma eriocheiris were identified, of which 12 were involved in a total of 21 metabolic pathways, including motility, chemotaxis, growth, metabolism and virulence of the bacteria. The results of this study form the basis for further research into the molecular mechanism of virulence and physiological differences between high- and low-virulence strains of Spiroplasma eriocheiris, and provide a scientific basis for a detailed understanding of its pathogenesis.


Assuntos
Braquiúros , Spiroplasma , Animais , Proteômica/métodos , Virulência , Spiroplasma/genética , Braquiúros/microbiologia
6.
BMC Microbiol ; 23(1): 260, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716961

RESUMO

BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.


Assuntos
Glossinidae , Spiroplasma , Tripanossomíase Africana , Moscas Tsé-Tsé , Wolbachia , Animais , Wolbachia/genética , Camarões , Chade , Nigéria , Spiroplasma/genética
7.
Appl Environ Microbiol ; 89(5): e0209522, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098937

RESUMO

Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.


Assuntos
Mariposas , Spiroplasma , Wolbachia , Animais , Feminino , Masculino , Simbiose , Larva/microbiologia , Reprodução , Apoptose , Wolbachia/genética , Spiroplasma/genética
8.
Curr Microbiol ; 80(1): 6, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445499

RESUMO

Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.


Assuntos
Bacteriófagos , Spiroplasma , Masculino , Animais , Drosophila , Bacteriófagos/genética , Drosophila melanogaster , Spiroplasma/genética
9.
Sci Adv ; 8(48): eabo7490, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449609

RESUMO

Motility is one of the most important features of life, but its evolutionary origin remains unknown. In this study, we focused on Spiroplasma, commensal, or parasitic bacteria. They swim by switching the helicity of a ribbon-like cytoskeleton that comprises six proteins, each of which evolved from a nucleosidase and bacterial actin called MreB. We expressed these proteins in a synthetic, nonmotile minimal bacterium, JCVI-syn3B, whose reduced genome was computer-designed and chemically synthesized. The synthetic bacterium exhibited swimming motility with features characteristic of Spiroplasma swimming. Moreover, combinations of Spiroplasma MreB4-MreB5 and MreB1-MreB5 produced a helical cell shape and swimming. These results suggest that the swimming originated from the differentiation and coupling of bacterial actins, and we obtained a minimal system for motility of the synthetic bacterium.


Assuntos
Actinas , Spiroplasma , Spiroplasma/genética , Natação , Bactérias , Citoesqueleto
10.
Nat Commun ; 13(1): 6930, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376306

RESUMO

Bacterial cell shape is generally determined through an interplay between the peptidoglycan cell wall and cytoplasmic filaments made of polymerized MreB. Indeed, some bacteria (e.g., Mycoplasma) that lack both a cell wall and mreB genes consist of non-motile cells that are spherical or pleomorphic. However, other members of the same class Mollicutes (e.g., Spiroplasma, also lacking a cell wall) display a helical cell shape and kink-based motility, which is thought to rely on the presence of five MreB isoforms and a specific fibril protein. Here, we show that heterologous expression of Spiroplasma fibril and MreB proteins confers helical shape and kinking ability to Mycoplasma capricolum cells. Isoform MreB5 is sufficient to confer helicity and kink propagation to mycoplasma cells. Cryoelectron microscopy confirms the association of cytoplasmic MreB filaments with the plasma membrane, suggesting a direct effect on membrane curvature. However, in our experiments, the heterologous expression of MreBs and fibril did not result in efficient motility in culture broth, indicating that additional, unknown Spiroplasma components are required for swimming.


Assuntos
Proteínas de Bactérias , Spiroplasma , Microscopia Crioeletrônica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Spiroplasma/genética
11.
Open Biol ; 12(10): 220083, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36285441

RESUMO

MreB is a bacterial protein belonging to the actin superfamily. This protein polymerizes into an antiparallel double-stranded filament that determines cell shape by maintaining cell wall synthesis. Spiroplasma eriocheiris, a helical wall-less bacterium, has five MreB homologous (SpeMreB1-5) that probably contribute to swimming motility. Here, we investigated the structure, ATPase activity and polymerization dynamics of SpeMreB3 and SpeMreB5. SpeMreB3 polymerized into a double-stranded filament with possible antiparallel polarity, while SpeMreB5 formed sheets which contained the antiparallel filament, upon nucleotide binding. SpeMreB3 showed slow Pi release owing to the lack of an amino acid motif conserved in the catalytic centre of MreB family proteins. Our SpeMreB3 crystal structures and analyses of SpeMreB3 and SpeMreB5 variants showed that the amino acid motif probably plays a role in eliminating a nucleophilic water proton during ATP hydrolysis. Sedimentation assays suggest that SpeMreB3 has a lower polymerization activity than SpeMreB5, though their polymerization dynamics are qualitatively similar to those of other actin superfamily proteins, in which pre-ATP hydrolysis and post-Pi release states are unfavourable for them to remain as filaments.


Assuntos
Actinas , Spiroplasma , Actinas/metabolismo , Polimerização , Proteínas de Bactérias/metabolismo , Natação , Prótons , Spiroplasma/genética , Spiroplasma/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Nucleotídeos/metabolismo , Água , Citoesqueleto de Actina/metabolismo
12.
BMC Microbiol ; 22(1): 209, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042402

RESUMO

BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.


Assuntos
Lepidópteros , Spiroplasma , Wolbachia , Animais , Filogenia , Spiroplasma/genética , Simbiose/genética , Wolbachia/genética
14.
Ticks Tick Borne Dis ; 13(2): 101896, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051893

RESUMO

The class Mollicutes comprises microorganisms that lack a cell wall, highly dependent on their host to survive. Within Mollicutes, the genus Spiroplasma comprises motile helical microorganisms associated with various insects and other arthropods. This study aimed to detect and characterize Mollicutes microorganisms in ticks of different species of veterinary importance, using molecular techniques. These ticks were collected from dogs, cats, cattle, and horses from Rio de Janeiro's metropolitan regions. They were morphologically classified and pooled according to their species for subsequent DNA extraction. These samples were tested by PCR using class Mollicutes-specific primers (16S rRNA) and positive amplicons were sequenced. The obtained DNA sequences were compared with other Mollicutes sequences deposited in GenBank. We found that four out of 745 (0.54%) of the tick pools were positive for members of the class Mollicutes, identified as Spiroplasma spp.; of the positive pools, one comprised Amblyomma sculptum adults and three comprised Dermacentor nitens nymphs. The present study describes Spiroplasma spp. in ticks in Brazil for the first time. Nevertheless, due to few reports on these microorganisms, further studies on epidemiology, virulence, and pathogenicity are needed.


Assuntos
Spiroplasma , Carrapatos , Animais , Brasil/epidemiologia , Cavalos , Ninfa , RNA Ribossômico 16S/genética , Spiroplasma/genética
15.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748550

RESUMO

Heritable symbionts represent important components of the biology, ecology and evolution of their arthropod hosts. Particular microbial taxa have become common across arthropods as a consequence of their ability to establish in new host species. For a host shift to occur, the symbiont must be exposed to a novel host and then be compatible: it must not cause excess pathology, must have good vertical transmission and must possess a drive phenotype that enables spread. Here we investigate the lability of compatibility to symbiosis with Spiroplasma. We used transinfection to establish the protective Spiroplasma symbiont from Drosophila hydei in two closely related novel hosts, Drosophila simulans and Drosophila melanogaster. The Spiroplasma had contrasting compatibility in the two species, exhibiting pathology and low vertical transmission but delivering protection from wasp attack in D. melanogaster but being asymptomatic and transmitted with high efficiency but with lower protection in D. simulans. Further work indicated that pathological interactions occurred in two other members of the melanogaster species group, such that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasizes the rapidity with which host-symbiont compatibility evolves, despite compatibility itself not being subject to direct selection. Further, the requirement to fit three independent components of compatibility (pathology, transmission, protection) is probably to be a major feature limiting the rate of host shifts that will likely impact on the utility of Spiroplasma in pest and vector control. Moving forward, the variation between sibling species pairs provides an opportunity to identify the mechanisms behind variable compatibility, which will drive hypotheses as to the evolutionary drivers of compatibility variation.


Assuntos
Drosophila , Spiroplasma , Animais , Drosophila melanogaster/genética , Evolução Biológica , Spiroplasma/genética , Simbiose/genética , Fenótipo
16.
Turkiye Parazitol Derg ; 45(3): 211-215, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346878

RESUMO

Objective: This study aimed to detect the presence of Wolbachia and Spiroplasma endosymbionts in Musca flies through molecular approaches. Methods: In total, 40 Musca spp. (20 female and 20 male) were used. Before DNA extraction, the flies were dissected and their heads, wings and legs were detached from their bodies under a stereomicroscope. Genomic DNA was analysed by standard polymerase chain reaction (PCR) using primers against Musca beta-tubulin. Afterward, the samples were examined for the presence of Wolbachia spp. using primers against Wolbachia wsp and GroEL. Furthermore, the DNA samples were analysed by PCR to detect the presence of Spiroplasma using primers against the 16S rRNA. Results: No Wolbachia positivity was detected in Musca flies, as shown by the negative PCR results for wsp and GroEL. Spiroplasma positivity was detected in 5% (1/20) of the female Musca flies but not in the male flies (0/20). Conclusion: Wolbachia spp. were not detected in Musca flies. Of the total Musca flies, only one was positive for Spiroplasma spp. To our knowledge, this is the first study to detect the presence of Spiroplasma in Musca flies.


Assuntos
Spiroplasma , Wolbachia , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Spiroplasma/genética , Simbiose , Wolbachia/genética
17.
Nat Commun ; 12(1): 3130, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035251

RESUMO

The ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes.


Assuntos
Arabidopsis/genética , Proteínas de Bactérias/genética , Metilação de DNA , DNA-Citosina Metilases/genética , Regulação da Expressão Gênica de Plantas , Spiroplasma/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA-Citosina Metilases/metabolismo , Histonas/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq/métodos , Spiroplasma/enzimologia
18.
BMC Genomics ; 22(1): 373, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022804

RESUMO

BACKGROUND: Spiroplasma citri comprises a bacterial complex that cause diseases in citrus, horseradish, carrot, sesame, and also infects a wide array of ornamental and weed species. S. citri is transmitted in a persistent propagative manner by the beet leafhopper, Neoaliturus tenellus in North America and Circulifer haematoceps in the Mediterranean region. Leafhopper transmission and the pathogen's wide host range serve as drivers of genetic diversity. This diversity was examined in silico by comparing the genome sequences of seven S. citri strains from the United States (BR12, CC-2, C5, C189, LB 319, BLH-13, and BLH-MB) collected from different hosts and times with other publicly available spiroplasmas. RESULTS: Phylogenetic analysis using 16S rRNA sequences from 39 spiroplasmas obtained from NCBI database showed that S. citri strains, along with S. kunkelii and S. phoeniceum, two other plant pathogenic spiroplasmas, formed a monophyletic group. To refine genetic relationships among S. citri strains, phylogenetic analyses with 863 core orthologous sequences were performed. Strains that clustered together were: CC-2 and C5; C189 and R8-A2; BR12, BLH-MB, BLH-13 and LB 319. Strain GII3-3X remained in a separate branch. Sequence rearrangements were observed among S. citri strains, predominantly in the center of the chromosome. One to nine plasmids were identified in the seven S. citri strains analyzed in this study. Plasmids were most abundant in strains isolated from the beet leafhopper, followed by strains from carrot, Chinese cabbage, horseradish, and citrus, respectively. All these S. citri strains contained one plasmid with high similarity to plasmid pSci6 from S. citri strain GII3-3X which is known to confer insect transmissibility. Additionally, 17 to 25 prophage-like elements were identified in these genomes, which may promote rearrangements and contribute to repetitive regions. CONCLUSIONS: The genome of seven S. citri strains were found to contain a single circularized chromosome, ranging from 1.58 Mbp to 1.74 Mbp and 1597-2232 protein-coding genes. These strains possessed a plasmid similar to pSci6 from the GII3-3X strain associated with leafhopper transmission. Prophage sequences found in the S. citri genomes may contribute to the extension of its host range. These findings increase our understanding of S. citri genetic diversity.


Assuntos
Hemípteros , Spiroplasma citri , Spiroplasma , Animais , Hemípteros/genética , América do Norte , Filogenia , RNA Ribossômico 16S/genética , Spiroplasma/genética , Spiroplasma citri/genética
19.
PLoS One ; 16(4): e0250524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914801

RESUMO

Insects are frequently infected with heritable bacterial endosymbionts. Endosymbionts have a dramatic impact on their host physiology and evolution. Their tissue distribution is variable with some species being housed intracellularly, some extracellularly and some having a mixed lifestyle. The impact of extracellular endosymbionts on the biofluids they colonize (e.g. insect hemolymph) is however difficult to appreciate because biofluid composition can depend on the contribution of numerous tissues. Here we investigate Drosophila hemolymph proteome changes in response to the infection with the endosymbiont Spiroplasma poulsonii. S. poulsonii inhabits the fly hemolymph and gets vertically transmitted over generations by hijacking the oogenesis in females. Using dual proteomics on infected hemolymph, we uncovered a weak, chronic activation of the Toll immune pathway by S. poulsonii that was previously undetected by transcriptomics-based approaches. Using Drosophila genetics, we also identified candidate proteins putatively involved in controlling S. poulsonii growth. Last, we also provide a deep proteome of S. poulsonii, which, in combination with previously published transcriptomics data, improves our understanding of the post-transcriptional regulations operating in this bacterium.


Assuntos
Drosophila melanogaster/genética , Proteoma/genética , Proteômica , Spiroplasma/genética , Animais , Proteínas de Bactérias/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Hemolinfa/microbiologia , Oogênese/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Spiroplasma/patogenicidade , Simbiose/genética , Simbiose/imunologia
20.
BMC Genomics ; 22(1): 240, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823812

RESUMO

BACKGROUND: Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS: Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION: The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.


Assuntos
Hemípteros , Spiroplasma , Animais , Carmim , Feminino , Genômica , Masculino , Spiroplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...