Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Arch Microbiol ; 206(6): 258, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735006

RESUMO

Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.


Assuntos
Ficocianina , Estresse Salino , Spirulina , Ficocianina/metabolismo , Ficocianina/isolamento & purificação , Spirulina/metabolismo , Spirulina/química , Biomassa , Congelamento
2.
Food Res Int ; 186: 114362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729724

RESUMO

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.


Assuntos
Microalgas , Ficocianina , Microalgas/metabolismo , Spirulina/química , Spirulina/metabolismo , Engenharia Metabólica
3.
Curr Microbiol ; 81(6): 152, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652305

RESUMO

Spirulina (Arthrospira and Spirulina spp.) has always been characterized by the helical trichomes, despite the existence of linear forms. A great debate is now open on the morphological flexibility of Spirulina, but it seems that both trichome morphology and C-phycocyanin (C-PC) concentrations are influenced by the culture conditions.This work compared the effect of some key growth factors (medium pH as well as its carbon, potassium, and salt contents) on the growth and C-PC concentration of helical and linear Spirulina strains. Further, two-phase strategies, including light and nitrogen variation, were applied to increase the in vivo C-PC accumulation into the trichomes. Results showed that high pH induced trichomes elongation and improved growth but decreased C-PC content (+ 65 and + 43% vs. -83 and -49%, for helical and linear strains, respectively). Variations in carbon and salt concentrations negatively impacted growth and C-PC content, even if the linear strain was more robust against these fluctuations. It was also interesting to see that potassium increasing improved growth and C-PC content for both strains.The variation of light wavelength during the enrichment phase (in the two-phase strategy) improved by 50% C-PC accumulation in trichomes, especially after blue lighting for 96 h. Similar result was obtained after 48 h of nitrogen reduction, while its removal from the medium caused trichomes disintegration. The current work highlights the robustness of linear Spirulina strain and presents an efficient and scalable way to increase C-PC in vivo without affecting growth.


Assuntos
Carbono , Meios de Cultura , Ficocianina , Spirulina , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Spirulina/química , Ficocianina/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Luz , Potássio/metabolismo
4.
J Hazard Mater ; 470: 134244, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598879

RESUMO

Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.


Assuntos
Cádmio , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/metabolismo , Cádmio/toxicidade , Substâncias Húmicas , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Benzopiranos/farmacologia , Antioxidantes/metabolismo , Monossacarídeos
5.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675566

RESUMO

Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.


Assuntos
Dessecação , Lipidômica , Metabolômica , Spirulina , Spirulina/metabolismo , Spirulina/química , Lipidômica/métodos , Metabolômica/métodos , Metaboloma , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Liofilização , Microalgas/metabolismo , Microalgas/química
6.
J Chromatogr A ; 1720: 464801, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479154

RESUMO

The high-purity phycocyanin has a high commercial value. Most current purification methods of C-phycocyanin involve multiple steps, which are complicated and time-consuming. To solve the problem, this research was studied, and an efficient affinity chromatography purification for C-phycocyanin from Spirulina platensis was developed. Through molecular docking simulation, virtual screening of ligands was performed, and ursolic acid was identified as the specific affinity ligand, which coupled to Affi-Gel 102 gel via 1-ethyl (3-dimethylaminopropyl)-3-carbodiimide, hydrochloride as coupling agent. With this customized and synthesized resin, a high-efficiency one-step purification procedure for C-phycocyanin was developed and optimized, the purity was determined to be 4.53, and the yield was 69 %. This one-step purification protocol provides a new approach for purifying other phycobilin proteins.


Assuntos
Ficocianina , Spirulina , Ficocianina/química , Simulação de Acoplamento Molecular , Spirulina/química , Spirulina/metabolismo , Cromatografia de Afinidade
7.
Bioresour Technol ; 399: 130612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508281

RESUMO

Spirulina is a promising feedstock for c-phycocyanin, a blue pigment-protein, commercially incorporated in many food products for its desirable bright blue attributes, exceptional bioavailability, and inherent therapeutic properties. Remarkably, enhancing c-phycocyanin synthesis in Spirulina would facilitate economic viability and sustainability at large-scale production, as the forecasted market value is $ 409.8 million by 2030. Notably, the lighting source plays a key role in enhancing c-phycocyanin in Spirulina, and thus, strategies to filter/concentrate the photons of respective wavelengths, influencing light spectra, are beneficial. Enveloping open raceway ponds and greenhouses by luminescent solar concentrators and light filtering sheets enables solar spectral conversion of the sunlight at desirable wavelengths, emerges as a promising strategy to enhance synthesis of c-phycocyanin in Spirulina. Nevertheless, the conduction of techno-economic assessments and evaluation of scalability at large-scale cultivation of Spirulina are essential for the real-time implementation of lighting strategies.


Assuntos
Spirulina , Spirulina/metabolismo , Ficocianina/metabolismo , Luz , Luminescência , Luz Solar
8.
Chemosphere ; 353: 141387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331268

RESUMO

In industrial-scale cultivation of microalgae, salinity stress often stimulates high-value metabolites production but decreases biomass yield. In this research, we present an extraordinary response of Arthrospira platensis to salinity stress. Specifically, we observed a significant increase in both biomass production (2.58 g L-1) and phycocyanin (PC) content (22.31%), which were enhanced by 1.26-fold and 2.62-fold, respectively, compared to the control, upon exposure to exogenous glycine betaine (GB). The biochemical analysis reveals a significant enhancement in carbonic anhydrase activity and chlorophyll a level, concurrent with reductions in carbohydrate content and reactive oxygen species (ROS) levels. Further, transcriptomic profiling indicates a downregulation of genes associated with the tricarboxylic acid (TCA) cycle and an upregulation of genes linked to nitrogen assimilation, hinting at a rebalanced carbon/nitrogen metabolism favoring PC accumulation. This work thus presents a promising strategy for simultaneous enhancement of biomass production and PC content in A. platensis and expands our understanding of PC biosynthesis and salinity stress responses in A. platensis.


Assuntos
Ficocianina , Spirulina , Betaína/farmacologia , Clorofila A/metabolismo , Biomassa , Nitrogênio/metabolismo , Spirulina/metabolismo , Estresse Salino , Suplementos Nutricionais
9.
J Sci Food Agric ; 104(6): 3648-3653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224494

RESUMO

BACKGROUND: Tyrosinase, a copper-containing metalloenzyme with catalytic activity, is widely found in mammals. It is the key rate-limiting enzyme that catalyzes melanin synthesis. For humans, tyrosinase is beneficial to the darkening of eyes and hair. However, excessive deposition of melanin in the skin can lead to dull skin color and lead to pigmentation. Therefore, many skin-whitening compounds have been developed to decrease tyrosinase activity. This study aimed to identify a new tyrosinase inhibitory peptide through enzymatic hydrolysis, in vitro activity verification, molecular docking, and molecular dynamics (MD) simulation. RESULTS: A tripeptide Asp-Glu-Arg (DER) was identified, with a '-CDOCKER_Energy' value of 121.26 Kcal mol-1 . DER has effective tyrosinase inhibitory activity. Research shows that its half maximal inhibitory concentration value is 1.04 ± 0.01 mmol L-1 . In addition, DER binds to tyrosinase residues His85, His244, His259, and Asn260, which are key residues that drive the interaction between the peptide and tyrosinase. Finally, through MD simulation, the conformational changes and structural stability of the complexes were further explored to verify and supplement the results of molecular docking. CONCLUSION: This experiment shows that DER can effectively inhibit tyrosinase activity. His244, His259, His260, and Asn260 are the critical residues that drive the interaction between the peptide and tyrosinase, and hydrogen bonding is an important force. DER from Spirulina has the potential to develop functional products with tyrosinase inhibition. © 2024 Society of Chemical Industry.


Assuntos
Monofenol Mono-Oxigenase , Ficocianina , Spirulina , Humanos , Animais , Simulação de Acoplamento Molecular , Spirulina/metabolismo , Melaninas/metabolismo , Inibidores Enzimáticos/química , Peptídeos , Mamíferos/metabolismo
10.
Sci Rep ; 14(1): 1398, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228623

RESUMO

The use of bio-stimulants in agriculture has emerged as a promising strategy to improve crop growth and yield. One type of bio-stimulant that has gained attention is microalgae extracts, which are known for their high metabolic activity, bioactive compounds, and ability to enhance plant growth and development. To investigate their effectiveness, a pot experiment was conducted at the Experimental Farm of Helwan University in Egypt during the 2022 season. The experiment aimed to evaluate the efficacy of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis (Spirulina platensis) extracts as bio-stimulants, applied through foliar spray at concentrations ranging from 0.25 to 2.0%, on common bean plants. Analysis of algal extract showed that . N. salina had the highest content of promotive growth hormones gibberellins (GA3) (74.85 ± 2.7mg100 g-1 d.wt). and auxins (IAA) (34.57 ± 2.7µg 100 g-1 d.wt.) compared to Chlorella and Arthrospira..The results revealed that the application of C. vulgaris, N. salina, and A. platensis extracts at concentrations up to 1.0% significantly improved various growth parameters, such as root, and shoot length, number of leaves and flowers per plant, leaf area, and total fresh and dry weight per plant. These extracts also positively affected yield attributes, including the number and fresh weight of pods per plant, seed index, seed yield per plant, and per feddan [a unit of land area]. Furthermore, the application of these extracts increased the chlorophyll content index with the maximum values of CCI (17.95. and 17.81%) was obtained at 0.50% N. salina, followed by 0.50% C.vulgaris. In addition to increase in the capacity of both non-enzymatic antioxidants [such as total antioxidant capacity, phenolics, and flavonoids] and enzymatic antioxidants [including catalase and ascorbic oxidase]. The most promising results were observed with the application of N. salina, and C. vulgaris extracts at a concentration of 0.5%. Additionally, the extracts significantly reduced the content of oxidative stress markers, such as malondialdehyde, percentage of electrolyte leakage, and hydrogen peroxide, in common bean plants compared to the control group. Contrarily, the measured parameters were reduced, while the levels of oxidative stress markers and some antioxidants including peroxidase, ascorbic peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione transferase were increased by three algal extracts at a concentration of 2.0%, compared to control plants. Additionally, the application of these microalgae extracts improved the quality parameters, proximate composition, seed energy, and mineral contents of the harvested seeds, with the most significant positive impact was observed at 0.5% concentration of algal extract. These findings demonstrate the successful and safe utilization of extracts from C. vulgaris, N. salina, and A. platensis at concentrations up to 1.0% as bio-stimulants to enhance common bean yields and improve the nutritional quality of dried beans for consumers.


Assuntos
Chlorella vulgaris , Phaseolus , Spirulina , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Spirulina/metabolismo , Phaseolus/metabolismo , Chlorella vulgaris/metabolismo , Extratos Vegetais
11.
Bioprocess Biosyst Eng ; 47(2): 181-193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38231212

RESUMO

The present study evaluates the association of the blue-green microalga Arthrospira maxima (Spirulina), which is known for its CO2 fixation, biomass, and high-value metabolite production, with the microalga growth-promoting bacterium Azospirillum brasilense under the stressful composition of biogas. The results demonstrated that A. maxima co-cultured with A. brasilense under the high CO2 (25%) and methane (CH4; 75%) concentrations of biogas recorded a CO2 fixation rate of 0.24 ± 0.03 g L-1 days-1, thereby attaining a biomass production of 1.8 ± 0.03 g L-1. Similarly, the biochemical composition quality of this microalga enhanced the attainment of higher contents of carbohydrates, proteins, and phycocyanin than cultured alone. However, metabolites other than tryptophan (Trp) and indole-3-acetic acid could have supported this beneficial interaction. Overall, the results demonstrate that this prokaryotic consortium of A. maxima-A. brasilense established a synergic association under biogas, which represents a sustainable strategy to improve the bio-refinery capacity of this microalga and increase the usefulness of A. brasilense in multiple economic sectors.


Assuntos
Azospirillum brasilense , Microalgas , Spirulina , Spirulina/metabolismo , Biocombustíveis , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Azospirillum brasilense/metabolismo
12.
Sci Rep ; 14(1): 2506, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291171

RESUMO

Microplastics (MPs) are newly recognized contaminants that result from the breakdown of plastics released into aquatic environments. This study focuses on the elimination of polystyrene (PS) using S. platensis, a natural biocoagulant, from aqueous solutions. The research investigated several crucial variables, including the initial level of PS ranging from 100 to 900 mg L-1, pH levels from 4 to 10, the contact time of 20-40 min, and doses of S. platensis ranging from 50 to 250 mg L-1. The analysis of the data revealed that the quadratic model offered the best fit for the experimental results. In the present study, we utilized S. platensis as a novel natural biocoagulant to effectively eliminate PS from aqueous solutions. Process optimization was performed using a Box-Behnken design (BBD). The best-fitting model for the data was the quadratic model. The results displayed that the highest elimination of PS (81%) was occurred at a pH of 4, with a contact time of 30 min, a dose of S. platensis at 250 mg L-1, and a PS concentration of 500 mg L-1. These findings show that S. platensis has a significant effect on removing PS from the aquatic environment. Algae can serve as a convenient and eco-friendly method, replacing chemical coagulants, to effectively remove MPs from the aquatic environment.


Assuntos
Spirulina , Poluentes Químicos da Água , Poliestirenos/metabolismo , Plásticos/metabolismo , Spirulina/metabolismo , Poluentes Químicos da Água/análise
13.
Biol Trace Elem Res ; 202(2): 685-700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37202582

RESUMO

Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 µg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 µg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.


Assuntos
Desnutrição , Selênio , Spirulina , Ratos , Feminino , Animais , Antioxidantes/metabolismo , Selenito de Sódio/farmacologia , Spirulina/metabolismo , Ratos Wistar , Selenoproteínas/metabolismo , Suplementos Nutricionais , Glutationa Peroxidase/metabolismo
14.
Appl Biochem Biotechnol ; 196(3): 1255-1271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382791

RESUMO

Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.


Assuntos
Chlorella , Microalgas , Spirulina , Chlorella/metabolismo , Spirulina/metabolismo , Suplementos Nutricionais , Carotenoides/metabolismo , Ficocianina , Microalgas/metabolismo
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1875-1888, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773524

RESUMO

The objective of this study was to investigate whether the neurotoxic effects caused by methotrexate (MTX), a frequently used chemotherapy drug, could be improved by administering Spirulina platensis (SP) and/or thymoquinone (TQ). Seven groups of seven rats were assigned randomly for duration of 21 days. The groups consisted of a control group that was given saline only. The second group was given 500 mg/kg of SP orally; the third group was given 10 mg/kg of TQ orally. The fourth group was given a single IP dose of 20 mg/kg of MTX on the 15th day of the experiment. The fifth group was given both SP and MTX, the sixth group was given both TQ and MTX, and the seventh group was given SP, TQ, and MTX. After MTX exposure, the study found that AChE inhibition, depletion of glutathione, and increased levels of MDA occurred. MTX also decreased the activity of SOD and CAT, as well as the levels of inflammatory mediators such as IL-1, IL-6, and tumor necrosis factor-α. MTX induced apoptosis in brain tissue. However, when MTX was combined with either SP or TQ, the harmful effects on the body were significantly reduced. This combination treatment resulted in a faster return to normal levels of biochemical, oxidative markers, inflammatory responses, and cell death. In conclusion, supplementation with SP or TQ could potentially alleviate MTX-induced neuronal injury, likely due to their antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes , Benzoquinonas , Spirulina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Metotrexato/toxicidade , Spirulina/metabolismo , Ratos Wistar , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo
16.
Environ Pollut ; 341: 123002, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000724

RESUMO

Hydrogen peroxide (H2O2) is an environmentally-safe algaecide used to control harmful algal blooms and as a disinfectant in various domestic and industrial applications. It is produced naturally in sunny-water or as a by-product during growth, and metabolism of photosynthetic organisms. To assess the impact of H2O2 on Arthrospira platensis, several biochemical components, and antioxidant enzymes were analysed. The growth and biomass of A. platensis were decreased under the effect of H2O2. Whereas, the concentration up to 40 µM H2O2 non-significantly induced (at P < 0.05) the Chl a, C-phycocyanin (C-PC), total phycobiliprotein (PBP), and the radical scavenging activity of A. platensis. The half-maximal effective concentrations (EC50) for H2O2 were 57, 65, and 74 µM H2O2 with regards to the biomass yield, Chl a, and C-PC content, respectively. While, the total soluble protein, and soluble carbohydrates contents were significantly induced. However, the higher concentrations (60 and 80 µM) were lethal to these components, in parallel to the initiation of the lipid peroxidation process. Surprisingly, the carotenoids content was non-significantly increased by H2O2. Despite the relative consistency of catalase (CAT), the activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes were boosted by all of the tested concentrations of H2O2. The relative transcript abundance of selected regulatory genes was also investigated. Except for the highest dose (80 µM), the tested concentrations had almost inhibitory effect on the relative transcripts of heat shock protein (HSP90), glutamate synthase (GOGAT), delta-9 desaturase (desC), iron-superoxide dismutase (FeSOD) and the Rubisco (the large subunit, rbcL) genes. The results demonstrated the importance of the non-enzymatic and enzymatic antioxidants for the cumulative tolerance of A. platensis.


Assuntos
Antioxidantes , Spirulina , Antioxidantes/metabolismo , Spirulina/química , Spirulina/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Ficocianina/farmacologia , Ficocianina/química , Ficocianina/metabolismo
17.
Protein J ; 43(1): 115-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127183

RESUMO

The addition of exogenous endocrine disrupting compounds (EDCs) like estrone, in the food chain through the aquatic system, disrupts steroid biosynthesis and metabolism by altering either the genomic or non-genomic pathway that eventually results in various diseases. Thus, bioremediation of these compounds is urgently required to prevent their addition and persistence in the environment. Enzymatic degradation has proven to be a knight in shining armour as it is safe and generates no toxic products. The multicopper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase), laccase with the potential to degrade both phenolic and non-phenolic substrates has recently gained attention. In this study, the laccase was purified, characterized, and used to study estrone degradation. The culture filtrate (crude laccase) was concentrated and precipitated using cold-acetone and dialyzed against tris buffer (50 mM) giving a four-fold partially purified form, with 45.56% yield and 204.14 U/mg as specific activity and a single peak at 250-300 nm. The partially purified laccase was approximately 80 kDa as estimated by SDS-PAGE preferred ABTS as substrate. Both crude and partially purified laccase showed maximum activity at pH 3.0, 40 °C, and 4 mM ABTS. Kinetic constants (Km, Vmax) of crude and partially purified laccase were found to be 0.83 mM; 494.31 mM/min, and 0.58 mM; 480.54 mM/min respectively. Iron sulphate and sodium azide inhibited laccase maximally. Crude and partially purified laccase degradation efficiency was 87.55 and 91.35% respectively. Spirulina CPCC-695 laccase with efficient estrone degradation ability renders them promising candidates for EDCs bioremediation.


Assuntos
Benzotiazóis , Lacase , Spirulina , Ácidos Sulfônicos , Lacase/química , Lacase/genética , Lacase/metabolismo , Estrona , Spirulina/metabolismo , Temperatura , Concentração de Íons de Hidrogênio
18.
Int J Biol Macromol ; 258(Pt 2): 128999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159692

RESUMO

Spirulina platensis, a microalga known for its exceptional nutritional value, especially its bioactive compounds and protein content, holds promise for incorporation into functional food products. Ricotta cheese whey is a byproduct of the production of ricotta cheese that is difficult to use in industries due to its low pH and less favorable processing qualities. This research aimed to create a unique fermented ricotta cheese whey-based beverage supplemented with various Spirulina powder concentrations (0.25 %, 0.5 %, and 0.75 % w/w) cooperated with a mixture of lemon and peppermint juice 10 % and fermented by probiotic (ABT) culture. The physicochemical, rheological, bioactive compounds, microbiological, and sensory properties were evaluated over a storage period of 21 days at cold storage. Spirulina-fermented whey-based beverages with a mixture of lemon and peppermint juice increased the concentration of vitamins, minerals, antioxidants, and total phenolic compounds in the final product. The count of probiotic bacteria in all fermented beverage samples exceeded 7 log CFU/mL throughout storage, indicating that the fermented beverage kept its probiotic properties. The addition of 0.5 % Spirulina significantly improved the final product's structural qualities and sensory acceptance.


Assuntos
Spirulina , Soro do Leite , Soro do Leite/química , Spirulina/metabolismo , Proteínas do Soro do Leite/química , Bebidas Fermentadas
19.
Microb Cell Fact ; 22(1): 248, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053179

RESUMO

Intracellular hyperaccumulation of phycocyanin (PC) and its high susceptibility to degradation at higher temperatures are major challenging problems associated with its production from cyanobacteria. The present study evaluated different concentrations of organic acids (1, 2, and 3 mM) (citric acid, acetic acid, succinic acid, fumaric acid, and oxalic acid) under fed-batch mode on the biomass and phycobiliproteins' production from Arthrospira platensis. Besides they were evaluated at 2.5-7.5 mM as preservative to stabilize PC at high temperatures. The incorporation of 3 mM of succinic acid into the cultivation medium enhanced the biomass and PC productivity to 164.05 and 26.70 mg L-1 day-1, which was ~ 2- and threefold higher than control, respectively. The produced PC in this treatment was food-grade with a 2.2 purity ratio. The use of organic acids also enhanced the thermal stability of PC. Citric acid (7.5 mM) markedly promoted the half-life values of PC to 189.44 min compared to 71.84 min in the control. The thermodynamic analysis confirmed higher thermostability of PC in the presence of organic acids and indicated the endothermic and non-spontaneity of the thermal denaturation process. The findings of the present study confirmed that organic acids could be utilized as cost effective and sustainable compounds for promoting not only phycobiliproteins' production but also the thermostability of PC for potential application in food industry.


Assuntos
Ficocianina , Spirulina , Spirulina/metabolismo , Ficobiliproteínas , Compostos Orgânicos/metabolismo , Ácido Cítrico/metabolismo , Succinatos/metabolismo
20.
N Biotechnol ; 78: 173-179, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37967766

RESUMO

The microalga Arthrospira platensis BEA 005B was produced in 11.4 m3 raceway photobioreactors and a culture medium based on commercial fertilisers and either freshwater or seawater. The biomass productivity of the reactors operated at a fixed dilution rate of 0.3 day-1 decreased from 22.9 g·m-2·day-1 when operated using freshwater to 16.3 g·m-2·day-1 when the biomass was produced using seawater. The protein content of the biomass produced in seawater was lower; however, the content of essential amino acids including valine, leucine and isoleucine was higher. Seawater also triggered the production of carotenoids and altered the synthesis and accumulation of fatty acids. For example, the biomass produced using seawater showed a 319% and 210% higher content of oleic and eicosenoic acid, respectively. The results demonstrate that it is possible to produce the selected microalga using seawater after an adaptation period and that the composition of the produced biomass is suitable for food applications.


Assuntos
Microalgas , Spirulina , Biomassa , Spirulina/metabolismo , Ácidos Graxos/metabolismo , Carotenoides/metabolismo , Água do Mar , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...