Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
BMC Microbiol ; 24(1): 258, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997629

RESUMO

BACKGROUND: Endometrial hyperplasia (EH) is a precursor to endometrial cancer, and the role of the microbiome in its development is unclear. RESULTS: The present study investigated the uterine microbiome in patients with benign uterine conditions and endometrial hyperplasia. A significant structural shift in the uterine microbiome of patients with endometrial hyperplasia compared to those with benign conditions was found. Delftia, Serratia and Stenotrophomonas were significantly enriched in endometrial hyperplasia samples and associated with the presence of endometrial hyperplasia. CONCLUSIONS: The novel finding suggested that increased abundance of Delftia, Serratia and Stenotrophomonas is associated with the presence of endometrial hyperplasia. Further investigation is needed to determine the value of these microbes as biomarkers for endometrial hyperplasia.


Assuntos
Bactérias , Hiperplasia Endometrial , Microbiota , Útero , Feminino , Humanos , Hiperplasia Endometrial/microbiologia , Hiperplasia Endometrial/patologia , Útero/microbiologia , Útero/patologia , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Adulto , RNA Ribossômico 16S/genética , Serratia/isolamento & purificação , Serratia/genética , Serratia/patogenicidade , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/genética
2.
Front Cell Infect Microbiol ; 14: 1410385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903940

RESUMO

Introduction: Stenotrophomonas is a prominent genus owing to its dual nature. Species of this genus have many applications in industry and agriculture as plant growth-promoting rhizobacteria and microbial biological control agents, whereas species such as Stenotrophomonas maltophilia are considered one of the leading gram-negative multi-drug-resistant bacterial pathogens because of their high contribution to the increase in crude mortality and significant clinical challenge. Pathogenic Stenotrophomonas species and most clinical isolates belong to the Stenotrophomonas maltophilia complex (SMc). However, a strain highly homologous to S. terrae was isolated from a patient with pulmonary tuberculosis (TB), which aroused our interest, as S. terrae belongs to a relatively distant clade from SMc and there have been no human association reports. Methods: The pathogenicity, immunological and biochemical characteristics of 610A2T were systematically evaluated. Results: 610A2T is a new species of genus Stenotrophomonas, which is named as Stenotrophomonas pigmentata sp. nov. for its obvious brown water-soluble pigment. 610A2T is pathogenic and caused significant weight loss, pulmonary congestion, and blood transmission in mice because it has multiple virulence factors, haemolysis, and strong biofilm formation abilities. In addition, the cytokine response induced by this strain was similar to that observed in patients with TB, and the strain was resistant to half of the anti-TB drugs. Conclusions: The pathogenicity of 610A2T may not be weaker than that of S. maltophilia. Its isolation extended the opportunistic pathogenic species to all 3 major clades of the genus Stenotrophomonas, indicating that the clinical importance of species of Stenotrophomonas other than S. maltophilia and potential risks to biological safety associated with the use of Stenotrophomonas require more attention.


Assuntos
Biofilmes , Infecções por Bactérias Gram-Negativas , Filogenia , Stenotrophomonas , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/genética , Stenotrophomonas/classificação , Stenotrophomonas/patogenicidade , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Biofilmes/crescimento & desenvolvimento , Camundongos , Fatores de Virulência/genética , RNA Ribossômico 16S/genética , Humanos , DNA Bacteriano/genética , Análise de Sequência de DNA , Modelos Animais de Doenças , Hemólise , Técnicas de Tipagem Bacteriana
3.
Braz J Microbiol ; 55(2): 1529-1543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340257

RESUMO

Multiple copper oxidase (MCO) like laccase is widely distributed in higher plant, fungi and bacteria. This study identified MCO like laccase producing bacterium isolated from a wastewater treatment plant based on 16S rRNA sequence analysis, and they were further confirmed by phylogenetic reconstruction. Biochemical and gene characterization of MCO like laccase from Stenotrophomonas sp. YBX1 is presented. Purification of MCO like laccase was carried out by ion exchange HQ Trap column and followed by gel filtration spheracryl S-100 column. The purified MCO like laccase from Stenotrophomonas sp. YBX1 shows a total activity of 1252 units and specific activity 391.2 U/mg and protein concentration 0.32 mg/mL. In SDS PAGE, the approximate molecular mass was found at 66 kDa and further confirmed from an MS spectrum of MALDI-TOF. The purified MCO like laccase is capable of degradation of antibiotics such as tetracycline completely, whereas oxytetracycline (78%) and ampicillin (62%) degraded within 96 min without any redox mediators at pH 5 and 30 ºC. Its degradation pathway was based on identification of metabolites by LC-MS spectrum. The enzymatic degradation may be used in advanced treatment of antibiotics containing wastewater.


Assuntos
Ampicilina , Antibacterianos , Lacase , Oxitetraciclina , Filogenia , Stenotrophomonas , Tetraciclina , Lacase/metabolismo , Lacase/genética , Lacase/química , Lacase/isolamento & purificação , Antibacterianos/metabolismo , Oxitetraciclina/metabolismo , Ampicilina/metabolismo , Tetraciclina/metabolismo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Stenotrophomonas/enzimologia , Stenotrophomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Biodegradação Ambiental
4.
Foodborne Pathog Dis ; 18(5): 337-345, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33625272

RESUMO

Stenotrophomonas maltophilia is a nosocomial, multidrug-resistant pathogen that causes significant economic losses in milk production and deterioration of dairy product quality. This study investigates the prevalence and the survival of S. maltophilia under different food preservation conditions. A total of 240 samples, including farm-sourced milk, dairy shop purchased milk, Kareish cheese, Domiati cheese, ice cream, yoghurt, cooking butter, and unpasteurized cream were collected from various locations in Beni-Suef Governorate, Egypt. Thirty samples of each product were analyzed by standard biochemical tests for the presence of Stenotrophomonas spp., which was isolated from 36% (87/240) of the examined samples. The highest prevalence was observed in ice cream (80%), followed by unpasteurized cream (67%), whereas the lowest incidence was in Domiati cheese (3.3%). S. maltophilia, identified by PCR, was found only in unpasteurized cream (13%), cooking butter (10%), ice cream (6.7%), and dairy shop milk (3.3%). We also studied the viability of S. maltophilia in laboratory manufactured cream, butter, and cheese under different preservation conditions. S. maltophilia was able to survive for 30, 30, 28, 30, and 8 d in the inoculated cream, butter 0% salt, butter 3% salt, cheese 0% salt, and cheese 6% salt, respectively. Thus, S. maltophilia was able to survive more than predicted in all products in this study. This suggests that strains of S. maltophilia may develop adaptive strategies that enable survival under different food preservation conditions, which contradicts previous knowledge about the sensitivity of this microbe to environmental stress conditions. Our overall aim was to draw attention to the prevalence and future potential for increased public health significance of Stenotrophomonas spp.


Assuntos
Laticínios/microbiologia , Microbiologia de Alimentos/estatística & dados numéricos , Conservação de Alimentos/métodos , Leite/microbiologia , Stenotrophomonas/isolamento & purificação , Animais , Egito , Contaminação de Alimentos/prevenção & controle , Prevalência
5.
Artigo em Inglês | MEDLINE | ID: mdl-33378252

RESUMO

Petroleum hydrocarbons (PHCs) in petroleum refinery sludge (PRS) are the most adverse components because of their toxic nature, which are harmful to human health and the aquatic ecosystem. This study aimed to identify and characterize an indigenous bacterium isolated from PRS of Indian oil corporation ltd. (IOCL), Haldia, India, and evaluate its performance for biodegradation of total petroleum hydrocarbon (TPH) of PRS. The bacterium molecularly characterized as Stenotrophomonas sp. IRB19 by 16S rRNA sequencing and phylogenetic analysis. The strain IRB19 showed a significant ability to utilize four different oils (kerosene, diesel, petrol and hexadecane) in-vitro. IRB19 could able to degrade up to 65 ± 2.4% of TPH in 28 d of incubation. Solvent extraction study showed that PRS contain 180.57 ± 3.44 g kg-1 of TPH and maltene fraction composed of aliphatic, aromatics and polar components of 52 ± 4, 39 ± 2 and 9 ± 1%, respectively. The TPH degradation best fitted for the Gompertz model and followed the first-order kinetics having the rate constant (k) and half-life period (t 1/2) of 0.036 d-1 and 19 d, respectively. Results of this study verified the suitability of the novel strain IRB19 for the biodegradation of PHCs.


Assuntos
Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Esgotos/microbiologia , Microbiologia do Solo , Poluentes do Solo/análise , Stenotrophomonas/crescimento & desenvolvimento , Biodegradação Ambiental , Ecossistema , Humanos , Índia , Modelos Teóricos , Petróleo/metabolismo , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Esgotos/química , Poluentes do Solo/metabolismo , Stenotrophomonas/isolamento & purificação
6.
Antonie Van Leeuwenhoek ; 113(10): 1447-1454, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32748076

RESUMO

A Gram-negative, facultatively anaerobic, motile bacterial strain, TPQG1-4T, was isolated from the leaf of Cyclobalanopsis patelliformis with spot disease. The isolate was investigated using the polyphasic taxonomic approach. 16S rRNA gene sequencing and analyzing revealed that the novel strain shares the highest sequence similarity with Stenotrophomonas lactitubi M15T (99.6%), Stenotrophomonas indicatrix WS40T (99.4%), Stenotrophomonas maltophilia IAM 12423T (99.2%) and Stenotrophomonas pavanii LMG 25348T (99.0%). In phylogenetic trees based on 16S rRNA gene sequences, the novel strain branched independently from other species of Stenotrophomonas. Average nucleotide identity values between the novel isolate and S. lactitubi M15T, S. indicatrix WS40T, S. maltophilia IAM 12423T, S. pavanii LMG 25348T, and Pseudomonas geniculata ATCC 19374T were 87.2%, 87.3%, 86.3%, 88.0%, and 81.3%, respectively, suggesting the isolate was a novel species of the genus Stenotrophomonas. The DNA G + C content of TPQG1-4T is 67.1 mol%. The major fatty acids were iso-C15:0 (25.4%) and anteiso-C15:0 (17.0%). The polar lipids of TPQG1-4T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, amino phospholipid and phospholipid. Based on phenotypic and genotypic characteristics, the strain represents a novel species in the genus Stenotrophomonas, for which the name Stenotrophomonas cyclobalanopsidis sp. nov. is proposed. The type strain is TPQG1-4T (= CFCC 15341T = LMG 31208T).


Assuntos
Doenças das Plantas/microbiologia , Quercus/microbiologia , Stenotrophomonas/classificação , Stenotrophomonas/isolamento & purificação , Genoma Bacteriano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Stenotrophomonas/química , Stenotrophomonas/genética
7.
Microbiologyopen ; 9(6): 1247-1263, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246583

RESUMO

Carbapenems are last-resort ß-lactam antibiotics used in healthcare facilities to treat multidrug-resistant infections. Thus, most studies on identifying and characterizing carbapenem-resistant bacteria (CRB) have focused on clinical settings. Relatively, little is still known about the distribution and characteristics of CRBs in the environment, and the role of soil as a potential reservoir of CRB in the United States remains unknown. Here, we have surveyed 11 soil samples from 9 different urban or agricultural locations in the Los Angeles-Southern California area to determine the prevalence and characteristics of CRB in these soils. All samples tested contained CRB with a frequency of <10 to 1.3 × 104  cfu per gram of soil, with most agricultural soil samples having a much higher relative frequency of CRB than urban soil samples. Identification and characterization of 40 CRB from these soil samples revealed that most of them were members of the genera Cupriavidus, Pseudomonas, and Stenotrophomonas. Other less prevalent genera identified among our isolated CRB, especially from agricultural soils, included the genera Enterococcus, Bradyrhizobium, Achromobacter, and Planomicrobium. Interestingly, all of these carbapenem-resistant isolates were also intermediate or resistant to at least 1 noncarbapenem antibiotic. Further characterization of our isolated CRB revealed that 11 Stenotrophomonas, 3 Pseudomonas, 1 Enterococcus, and 1 Bradyrhizobium isolates were carbapenemase producers. Our findings show for the first time that both urban and agricultural soils in Southern California are an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including carbapenemase-producing CRB.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus/genética , Farmacorresistência Bacteriana/genética , Pseudomonas/genética , Stenotrophomonas/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , California , Carbapenêmicos/farmacologia , Cupriavidus/efeitos dos fármacos , Cupriavidus/isolamento & purificação , Humanos , Los Angeles , Testes de Sensibilidade Microbiana , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Solo , Microbiologia do Solo , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/isolamento & purificação
8.
Lett Appl Microbiol ; 70(4): 300-309, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31891417

RESUMO

Two bacterial strains able to produce polyhydroxyalkanoates (PHAs) from a wide variety of pure carbon sources (dextrose, xylose, sucrose, lactose and glycerol) were isolated from forest soils and identified as Achromobacter mucicolens and Stenotrophomonas rhizophila. Achromobacter mucicolens also produced poly(3-hydroxybutyrate) (PHB) from different wastes (cheese whey, molasses, agave bagasse hydrolysate, nejayote and mango waste pulp). Stenotrophomonas rhizophila, produced the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV) from glycerol (7·7 mol% of HV), and from sucrose with addition of propionic or valeric acid (4·5 and 25 mol% of HV, respectively). The copolymers presented a lower melting point (145, 156 and 127°C) and crystallinity (23, 26 and 16%) than PHB. The maximum biopolymer accumulation (PHB) for each strain growing in pure carbon source was as follows: 31·3 g per 100 g dry cell weight (DCW) for A. mucicolens from xylose; and 13·7 g per 100 g DCW for S. rhizophila from sucrose. Regarding the waste carbon sources, the highest PHB accumulation was obtained from agave bagasse hydrolysate (20·4 g per 100 g DCW) by A. mucicolens. The molecular weights of the biopolymers obtained ranged from 200 to 741 kDa. SIGNIFICANCE AND IMPACT OF THE STUDY: The economic cost of the carbon source for the culture of polyhydroxyalkanoates (PHAs)-producing microorganisms is one of the main process limitations. Therefore, it is vital to find versatile microorganisms able to grow and to accumulate homo and copolymers of PHAs from low-cost substrates. In this research, we report two bacterial strains that produce poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or both from at least five pure and five waste carbon sources. These results, by such bacterial strains have not been reported, especially the production of copolymer from glycerol without addition of precursors by Stenotrophomonas rhizophila and the production of PHB from xylose and agave bagasse hydrolysate by Achromobacter mucicolens.


Assuntos
Biopolímeros/biossíntese , Poli-Hidroxialcanoatos/biossíntese , Microbiologia do Solo , Stenotrophomonas/metabolismo , Biopolímeros/química , Carbono/metabolismo , Florestas , Glicerol/metabolismo , Resíduos Industriais/análise , Peso Molecular , Poli-Hidroxialcanoatos/química , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Resíduos/análise
9.
Afr Health Sci ; 20(1): 168-181, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33402905

RESUMO

BACKGROUND: Stenotrophomonas species are multi-resistant bacteria with ability to cause opportunistic infections. OBJECTIVE: We isolated 45 Stenotrophomonas species from soil, sewage and the clinic with the aim of investigating their susceptibility to commonly used antimicrobial agents. METHODOLOGY: The identities of isolates were confirmed with 16S rRNA gene sequence and MALDI-TOF analysis. Anti-microbial resistance, biofilm production and clonal diversity were also evaluated. The minimum inhibitory concentration technique as described by Clinical & Laboratory Standards Institute: CLSI Guidelines (CLSI) was employed for the evaluation of isolate susceptibility to antibiotics. RESULT: Forty-five Stenotrophomonas species which include 36 environmental strains and 9 clinical strains of S. maltophilia were considered in this study. 32 (88.9 %) environmental strains were identified to be S. maltophilia, 2 (5.6 %) were Stenotrophomonas nitritireducens, and 2 (5.6 %) cluster as Stenotrophomonas spp. Stenotrophomonas isolates were resistant to at least six of the antibiotics tested, including Trimethoprim/Sulfamethoxazole (SXT). CONCLUSION: Environmental isolates from this study were resistant to SXT which is commonly used for the treatment of S. maltophilia infections. This informs the need for good public hygiene as the environment could be a reservoir of multi-resistant bacteria. It also buttresses the importance of surveillance study in the management of bacterial resistance.


Assuntos
Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Espectrometria de Massas/métodos , Esgotos/microbiologia , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/isolamento & purificação , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Humanos , México , Testes de Sensibilidade Microbiana , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Stenotrophomonas/classificação , Stenotrophomonas/genética
10.
Int Microbiol ; 23(2): 253-261, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31485794

RESUMO

The potential of indigenous bacterial strains to accumulate three metals (Cr, Ni, Pb) was exploited here to remediate the polluted environment. In the present study, metal resistance profiles identified three most potential isolates which could tolerate 700-1000 µg/ml of Ni, 500-1000 µg/ml of Cr, and 1000-1600 µg/ml of Pb. These three bacterial strains were identified as Stenotrophomonas sp. MB339, Klebsiella pneumoniae MB361, and Staphylococcus sp. MB371. UV-Visible and atomic absorption spectrophotometric (AAS) analysis revealed gradual increase in percentage accumulation with increase in time due to increased biomass. Quantitative assessments exhibited maximum removal of Cr (83.51%) by Klebsiella pneumoniae MB361, Pb (85.30%), and Ni (48.78%) by Stenotrophomonas MB339, at neutral pH and 37 °C, whereas Staphylococcus sp. MB371 sorbed 88.33% of Pb at slightly acidic pH. The present study therefore supports the effective utilization of indigenous bacteria for comprehensive treatment of metal-rich industrial effluents.


Assuntos
Bactérias/metabolismo , Bioacumulação , Resíduos Industriais , Metais Pesados/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cromo/metabolismo , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Chumbo/metabolismo , Níquel/metabolismo , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/metabolismo
11.
PLoS One ; 14(12): e0226155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860658

RESUMO

Exploration of diverse environmental samples for plant growth-promoting microbes to fulfill the increasing demand for sustainable agriculture resulted in increased use of bacterial biofertilizer. We aimed for the isolation of plant growth-promoting as well as antibiotic sensitive bacteria from bovine manure samples. The basic theme of our study is to highlight potentials of bacteria in manure and the unchecked risk associated with the application of manure i.e. introducing antibiotic-resistant microbial flora, as fertilizer. Fifty-two, morphologically distinct isolates; from eight different manure samples, were subjected to plant growth-promoting parametric tests along with antibiotic resistance. Thirteen antibiotic sensitive bacterial strains with potentials of plant growth promotion further characterized by 16S rRNA ribotyping and the identified genera were Stenotrophomonas, Achromobacter, Pseudomonas, and Brevibacillus. Successful radish seeds germination under sterile in-vitro conditions showed the potential of selected bacterial isolates as plant growth-promoting bacteria. The results of this study confirmed plant growth-promoting characteristics of bovine manures' bacterial strains along with an alarming antibiotic resistance load which comprises 75% of bacterial isolated population. Our study showed distinct results of un-explored manure bacterial isolates for plant growth promotion and flagged ways associated with unchecked manure application in agriculture soil through high load of antibiotic resistant bacteria.


Assuntos
Bactérias/classificação , Esterco/microbiologia , RNA Ribossômico 16S/genética , Raphanus/crescimento & desenvolvimento , Achromobacter/classificação , Achromobacter/isolamento & purificação , Achromobacter/fisiologia , Agricultura/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Brevibacillus/classificação , Brevibacillus/isolamento & purificação , Brevibacillus/fisiologia , Bovinos , Fertilizantes , Germinação , Testes de Sensibilidade Microbiana , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Pseudomonas/fisiologia , Raphanus/microbiologia , Microbiologia do Solo , Stenotrophomonas/classificação , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/fisiologia
12.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652989

RESUMO

Endophytic bacteria, as the most promising components of effective, biofertilizers biostimulating and biocontrol preparations, should be very intensively obtained from various plants and studied in terms of the conditions determining the potential ability to promote plant growth. For this reason, endophytic bacteria have been isolated from both stems and roots of up to six systematically distant species of vascular plants: one species belonging to the seedless vascular plants (Monilophyta), and five seed plants (Spermatophyta). The 23 isolated strains represented nine genera: Delftia, Stenotrophomonas, Rhizobium, Brevundimonas, Variovorax, Achromobacter, Novosphingobium, Comamonas and Collimonas, notably which were closely related-belonging to the phylum Proteobacteria. Stenotrophomonas sp. strains showed the greatest ability to synthesize indole-3-acetic acid (IAA)-like compounds, while Achromobacter sp. strains produced the highest levels of siderophores. The presence of the nifH gene and nitrogen binding activity was demonstrated for 95% of the strains tested. Stenotrophomonas maltophila (ES2 strain) showed the highest metabolic activity based on Biolog GEN III test. The ability to solubilize phosphate was determined only for three tested strains from genus: Delftia, Rhizobium and Novosphingobium. The presented work demonstrated that the metabolic and phenotypic properties of plant growth-promoting endophytes are correlated with the genus of bacteria and are not correlated with the host plant species or part of plant (stem, root).


Assuntos
Bactérias/metabolismo , Plantas/microbiologia , Bactérias/isolamento & purificação , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/microbiologia , Análise de Componente Principal , Rhizobium/química , Rhizobium/isolamento & purificação , Rhizobium/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Stenotrophomonas/química , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/metabolismo , Vicia faba/crescimento & desenvolvimento , Vicia faba/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
13.
Sci Rep ; 9(1): 12457, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462655

RESUMO

Recently, bacterial endophytes (BEs) have gained importance in the agricultural sector for their use as biocontrol agents to manage plant pathogens. Outbreak of the pine wilt disease (PWD) in Korea has led researchers to test the feasibility of BEs in controlling the pine wood nematode (PWN) Bursaphelenchus xylophilus. In this study, we have reported the diversity and biocontrol activity of BEs against the PWN. By employing a culture-dependent approach, 1,622 BEs were isolated from the needle, stem, and root tissues of P. densiflora, P. rigida, P. thunbergii, and P. koraiensis across 18 sampling sites in Korea. We classified 389 members based on 16S rDNA analysis and taxonomic binning, of which, 215 operational taxonomic units (OTUs) were determined. Using Shannon's indices, diversity across the Pinus species and tissues was estimated to reveal the composition of BEs and their tissue-specific preferences. When their ethyl acetate crude extracts were analysed for biocontrol activity, 44 candidates with nematicidal activity were obtained. Among these, Stenotrophomonas and Bacillus sp. exhibited significant inhibitory activity against PWN during their developmental stages. Altogether, our study furnishes a basic comprehension of bacterial communities found in the Pinus species and highlights the potential of BEs as biocontrol agents to combat PWD.


Assuntos
Antinematódeos , Bacillus , Nematoides/crescimento & desenvolvimento , Controle Biológico de Vetores , Pinus , Stenotrophomonas , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Bacillus/classificação , Bacillus/genética , Bacillus/metabolismo , Pinus/microbiologia , Pinus/parasitologia , Stenotrophomonas/classificação , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/metabolismo
14.
PLoS One ; 14(8): e0221099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31425544

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, is an important plant-parasitic nematode that can cause severe mortality of pine trees. This PWN-induced harm to plants may be closely related to the abundance and diversity of the symbiotic microorganisms of the parasitic nematode. In this study, nematodes were divided into untreated and antibiotic-treated groups. Nematodes were treated by fumigation with different amounts of α-pinene, and the resultant mortality rates were analyzed statistically. Concentrations of symbiotic bacteria were calculated as colony-forming units per nematode. High-throughput sequencing was used to investigate the bacterial community structure. The results showed that the mortality of nematodes increased slightly with an increasing concentration of α-pinene, and nematodes untreated with antibiotics were more sensitive to α-pinene than those treated with antibiotics. The highest abundance of symbiotic bacteria was obtained via medium and low levels of α-pinene, but for which community diversity was the lowest (Shannon and Simpson indexes). The proportion of Pseudomonas spp. in the symbiotic bacteria of nematodes without antibiotics was relatively high (more than 70%), while that of Stenotrophomonas spp. was low (6%-20%). However, the proportion of Stenotrophomonas spp. was larger than that of Pseudomonas spp in the symbiotic bacteria associated with the antibiotic-treated nematodes. Pseudomonas sp. increased after pinene treatment, whereas Stenotrophomonas spp. decreased. These results indicate that although α-pinene has low toxicity to PWNs over a short time period, α-pinene ultimately influences the abundance and community diversity of the symbiotic bacteria of these nematodes; this influence may potentially disturb the development and reproduction of nematodes in the process of infecting pine trees.


Assuntos
Monoterpenos Bicíclicos/administração & dosagem , Pinus/parasitologia , Doenças das Plantas/prevenção & controle , Pseudomonas/efeitos dos fármacos , Rabditídios/efeitos dos fármacos , Stenotrophomonas/efeitos dos fármacos , Animais , Monoterpenos Bicíclicos/toxicidade , Contagem de Colônia Microbiana , DNA Bacteriano/isolamento & purificação , Relação Dose-Resposta a Droga , Fumigação , Doenças das Plantas/parasitologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Rabditídios/microbiologia , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Simbiose/efeitos dos fármacos
15.
Plant Mol Biol ; 100(6): 659-674, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187392

RESUMO

KEY MESSAGE: Oxalotrophic Stenotrophomonas isolated from tomato rhizosphere are able to protect plants against oxalate-producing pathogens by a combination of actions including induction of plant defence signalling callose deposition and the strengthening of plant cell walls and probably the degradation of oxalic acid. Oxalic acid plays a pivotal role in the virulence of the necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. In this work, we isolated two oxalotrophic strains (OxA and OxB) belonging to the bacterial genus Stenotrophomonas from the rhizosphere of tomato plants. Both strains were capable to colonise endophytically Arabidopsis plants and protect them from the damage caused by high doses of oxalic acid. Furthermore, OxA and OxB protected Arabidopsis from S. sclerotiorum and B. cinerea infections. Bacterial inoculation induced the production of phenolic compounds and the expression of PR-1. Besides, both isolates exerted a protective effect against fungal pathogens in Arabidopsis mutants affected in the synthesis pathway of salicylic acid (sid2-2) and jasmonate perception (coi1). Callose deposition induced by OxA and OxB was required for protection against phytopathogens. Moreover, B. cinerea and S. sclerotiorum mycelial growth was reduced in culture media containing cell wall polysaccharides from leaves inoculated with each bacterial strain. These findings suggest that cell walls from Arabidopsis leaves colonised by these bacteria would be less susceptible to pathogen attack. Our results indicate that these oxalotrophic bacteria can protect plants against oxalate-producing pathogens by a combination of actions and show their potential for use as biological control agents against fungal diseases.


Assuntos
Fungos/patogenicidade , Oxalatos/metabolismo , Solanum lycopersicum/microbiologia , Stenotrophomonas/fisiologia , Arabidopsis/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidade , Parede Celular/metabolismo , Ciclopentanos/química , Fungos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Oxálico/metabolismo , Oxilipinas/química , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Stenotrophomonas/isolamento & purificação
16.
Cells ; 8(4)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987227

RESUMO

A largely understudied microbially mediated mercury (Hg) bioremediative pathway includes the volatilization of Hg2+ to Hg°. Therefore, studies on Hg resistant bacteria (HgR), isolated from historically long-term contaminated environments, can serve as models to understand mechanisms underpinning Hg cycling. Towards this end, a mercury resistant bacterial strain, identified as Stenotrophomonas sp., strain MA5, was isolated from Mill Branch on the Savannah River Site (SRS); an Hg-impacted ecosystem. Minimum inhibitory concentration (MIC) analysis showed Hg resistance of up to 20 µg/mL by MA5 with 95% of cells retaining viability. Microcosm studies showed that the strain depleted more than 90% of spiked Hg2+ within the first 24 h of growth and the detection of volatilized mercury indicated that the strain was able to reduce Hg2+ to Hg°. To understand molecular mechanisms of Hg volatilization, a draft whole genome sequence was obtained, annotated and analyzed, which revealed the presence of a transposon-derived mer operon (merRTPADE) in MA5, known to transport and reduce Hg2+ into Hg°. Based on the whole genome sequence of strain MA5, qRT-PCR assays were designed on merRTPADE, we found a ~40-fold higher transcription of merT, P, A, D and E when cells were exposed to 5 µg/mL Hg2+. Interestingly, strain MA5 increased cellular size as a function of increasing Hg concentrations, which is likely an evolutionary response mechanism to cope with Hg stress. Moreover, metal contaminated environments are shown to co-select for antibiotic resistance. When MA5 was screened for antibiotic resistance, broad resistance against penicillin, streptomycin, tetracycline, ampicillin, rifampicin, and erythromycin was found; this correlated with the presence of multiple gene determinants for antibiotic resistance within the whole genome sequence of MA5. Overall, this study provides an in-depth understanding of the underpinnings of Stenotrophomonas-mercury interactions that facilitate cellular survival in a contaminated soil habitat.


Assuntos
Mercúrio/toxicidade , Rios/microbiologia , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos , Mercúrio/isolamento & purificação , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Stenotrophomonas/genética , Stenotrophomonas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Volatilização
17.
Artigo em Inglês | MEDLINE | ID: mdl-30628541

RESUMO

Degradation of phenol is considered to be a challenge because of harsh environments in cold regions and ground waters. Molecular characterization of phenol degrading bacteria was investigated to gain an insight into the biodegradation in cold areas. The psychrotolerant and psychrophiles bacteria were isolated from alpine soils in the northeast of Iran. These strains belonged to Pseudomonas sp., Stenotrophomonas spp. and Shinella spp. based on analysis of the 16S rRNA gene. These strains were capable of the complete phenol degradation at a concentration of 200 mg L-1 at 20 °C. Moreover, the strains could degrade phenol at a concentration of 400 and 600 mg L-1 at a higher time. Effects of environmental factors were studied using one factor at a time (OFAT) approach for Pseudomonas sp.ATR208. When the bacterium was grown in a liquid medium with 600 mg L-1 of concentration supplemented with optimum carbon and nitrogen sources, more than 99% of phenol removal was obtained at 20 °C and 24 h. Therefore, the present study indicated the potential of the local cold tolerant bacteria in the phenol bioremediation.


Assuntos
Poluentes Ambientais/análise , Fenol/análise , Pseudomonas/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Microbiologia do Solo , Stenotrophomonas/crescimento & desenvolvimento , Altitude , Biodegradação Ambiental , Clima Frio , Relação Dose-Resposta a Droga , Irã (Geográfico) , Modelos Teóricos , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S , Rhizobiaceae/isolamento & purificação , Stenotrophomonas/isolamento & purificação
18.
Curr Microbiol ; 75(11): 1484-1492, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30109428

RESUMO

Stenotrophomonas MB339, a bacterium, which could potentially utilize aromatic compounds and tolerate different heavy metals was isolated from industrial wastewater. Subsequent experiments revealed strains ability to resist antibiotics ofloxacin, streptomycin, rifampicillin, erythromycin, ampicillin, clindamycin, and toxicants including As2+, Hg2+, Cu2+, Ni2+, Pb2+. The shotgun sequencing strategy, genome assembly and annotation uncovered specific features, which make this strain MB339 effectively promising to cope with highly contaminated conditions. This report presents isolate's assembled genome and its functional annotation identifying a set of protein coding genes (4711), tRNA (69 genes), and rRNA (9 genes). More than 2900 genes were assigned to various Clusters of Orthologous Groups (COGs) and 1114 genes attributed to 37 different Koyoto Encyclopedia of Genes and Genomes (KEGGs) pathways. Among these annotated genes, eighteen were for key enzymes taking part in xenobiotic degradation. Furthermore, 149 genes have been assigned to virulence, disease, and defense mechanisms responsible for multidrug and metal resistance including mercury, copper, and arsenic operons. These determinants comprised genes for membrane proteins, efflux pumps, and metal reductases, suggesting its potential applications in bioremediation.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/metabolismo , Águas Residuárias/microbiologia , Xenobióticos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Farmacorresistência Bacteriana , Genes Essenciais , Genoma Bacteriano , Metais Pesados/metabolismo , Família Multigênica , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação
19.
Sci Rep ; 8(1): 6448, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691456

RESUMO

Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (104 and 106 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 104 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO3), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.


Assuntos
Materiais de Construção/microbiologia , Bactérias Formadoras de Endosporo/metabolismo , Microbiologia Industrial/métodos , Álcalis/química , Bacillus/química , Bacillus/isolamento & purificação , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Brevibacillus/química , Brevibacillus/isolamento & purificação , Carbonato de Cálcio/química , Força Compressiva , Microscopia Eletrônica de Varredura , Paenibacillus/química , Paenibacillus/isolamento & purificação , Stenotrophomonas/química , Stenotrophomonas/isolamento & purificação
20.
Int J Syst Evol Microbiol ; 68(6): 1830-1838, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29638210

RESUMO

Five Gram-stain-negative, rod-shaped, none-spore-forming isolates were obtained from biofilms on different sites of a milking machine in Germany. Another strain with similar morphological characteristics was isolated from dirty dishes. Based on phylogenetic analysis of the 16S rRNA and gyrB genes, all isolates were assigned to the genus Stenotrophomonas, but were divided into three different groups. Chemotaxonomic characterization of the isolates led to the detection of iso-C15 : 0 and anteiso-C15 : 0 as the predominant cellular fatty acids, as well as small amounts of the hydroxyl fatty acids iso-C11 : 0 3-OH, C12 : 0 3-OH and iso-C13 : 0 3-OH. One group could be assigned to the species Stenotrophomonas maltophilia, while the genome sequences of two groups displayed average nucleotide identity values of less than 94 % between each other and the genome sequences of the next related type strains Stenotrophomonas maltophilia ATCC 13637T and Stenotrophomonas rhizophila DSM 14405T. Further phylogenetic, phenotypic and chemotaxonomic analyses enabled the differentiation of these strains from these closely related species. They are therefore considered to represent two novel species, for which the names Stenotrophomonaslactitubi and Stenotrophomonasindicatrix are proposed, with strains M15T (=DSM 104152T=LMG29943T) and WS40T (=DSM28278T=LMG29942T) as type strains.


Assuntos
Microbiologia de Alimentos , Filogenia , Stenotrophomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Indústria de Laticínios/instrumentação , Ácidos Graxos/química , Genes Bacterianos , Alemanha , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA