Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1372904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742116

RESUMO

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Assuntos
Fagócitos , Fagocitose , Proteínas Recombinantes , Animais , Fagocitose/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Ligação Proteica , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/genética , Imunidade Inata , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Ouriços-do-Mar/imunologia , Vibrio/imunologia , Proteínas Opsonizantes/metabolismo , Proteínas Opsonizantes/imunologia
2.
Front Immunol ; 12: 744783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867968

RESUMO

The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.


Assuntos
Imunidade Inata/genética , Imunidade Inata/imunologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Animais , Genoma , Filogenia
3.
Cell Tissue Res ; 377(3): 469-474, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31463705

RESUMO

The embryo of the purple sea urchin has been a fruitful model for the study of developmental gene regulatory networks. For similar reasons, the feeding sea urchin larva provides a gene regulatory model to investigate immune interactions at the gut epithelium. Here we describe what is known of the gut structure and immune cells of the sea urchin larva, and the cellular and gene expression response of the larva to gut-associated immune challenge. As a focused example of how the sea urchin larva can be compared with vertebrate systems, we discuss the expression and function of the IL-17 signalling system in the course of the larval immune response.


Assuntos
Sistema Digestório/imunologia , Epitélio/imunologia , Interleucina-17/imunologia , Larva/imunologia , Strongylocentrotus purpuratus/imunologia , Animais , Regulação da Expressão Gênica/imunologia
4.
Front Immunol ; 10: 3014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993052

RESUMO

Exposure to and colonization by bacteria during development have wide-ranging beneficial effects on animal biology but can also inhibit growth or cause disease. The immune system is the prime mediator of these microbial interactions and is itself shaped by them. Studies using diverse animal taxa have begun to elucidate the mechanisms underlying the acquisition and transmission of bacterial symbionts and their interactions with developing immune systems. Moreover, the contexts of these associations are often confounded by stark differences between "wild type" microbiota and the bacterial communities associated with animals raised in conventional or germ-free laboratories. In this study, we investigate the spatio-temporal kinetics of bacterial colonization and associated effects on growth and immune function in larvae of the purple sea urchin (Strongylocentrotus purpuratus) as a model for host-microbe interactions and immune system development. We also compare the host-associated microbiota of developing embryos and larvae raised in natural seawater or exposed to adult-associated bacteria in the laboratory. Bacteria associated with zygotes, embryos, and early larvae are detectable with 16S amplicon sequencing, but 16S-FISH indicates that the vast majority of larval bacterial load is acquired after feeding begins and is localized to the gut lumen. The bacterial communities of laboratory-cultured embryos are significantly less diverse than the natural microbiota but recapitulate its major components (Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes), suggesting that biologically relevant host-microbe interactions can be studied in the laboratory. We also demonstrate that bacterial exposure in early development induces changes in morphology and in the immune system. In the absence of bacteria, larvae grow larger at the 4-arm stage. Additionally, bacteria-exposed larvae are significantly more resistant to lethal infection with the larva-associated pathogen Vibrio lentus suggesting that early exposure to high levels of microbes, as would be expected in natural conditions, affects the immune state in later larvae. These results expand our knowledge of microbial influences on early sea urchin development and establish a model in which to study the interactions between the developing larval immune system and the acquisition of larval microbiota.


Assuntos
Infecções Bacterianas/imunologia , Resistência à Doença/imunologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia , Vibrioses/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Larva/imunologia , Larva/microbiologia , Simbiose/imunologia , Vibrio
5.
PLoS One ; 13(5): e0196890, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738524

RESUMO

The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker's yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity.


Assuntos
Imunidade Inata/genética , Fagocitose/genética , Proteínas Recombinantes/genética , Strongylocentrotus purpuratus/genética , Animais , Variação Genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/patogenicidade , Fagócitos/imunologia , Fagócitos/microbiologia , Fagocitose/imunologia , Proteínas Recombinantes/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia
6.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242650

RESUMO

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Assuntos
Imunidade Inata/imunologia , Strongylocentrotus purpuratus/imunologia , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Biologia Computacional , Variação Genética , Fragmentos de Peptídeos/imunologia , Proteínas/imunologia
7.
Dev Biol ; 416(1): 149-161, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265865

RESUMO

E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leucopoese , Strongylocentrotus purpuratus/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Blástula/citologia , Blástula/embriologia , Sequência Conservada , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas , Células-Tronco , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
8.
Immunol Cell Biol ; 94(9): 861-874, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192936

RESUMO

The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Celular , Larva/imunologia , Larva/microbiologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia , Animais , Comunicação Celular/genética , Epitélio/imunologia , Regulação da Expressão Gênica , Imunidade Celular/genética , Larva/citologia , Larva/genética , Modelos Imunológicos , Água do Mar , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/genética , Transcrição Gênica
9.
Dev Comp Immunol ; 62: 29-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27113124

RESUMO

The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.


Assuntos
Sistema Imunitário , Imunidade Celular , Paracentrotus/imunologia , Fagócitos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antígenos de Bactérias/imunologia , Comunicação Celular , Células Cultivadas , Humanos , Imunidade Humoral , Fatores Inibidores da Migração de Macrófagos/genética , Proteínas Nucleares/genética , Fagocitose , Strongylocentrotus purpuratus/imunologia , Fatores de Transcrição/genética
10.
Immunobiology ; 221(8): 889-903, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27020848

RESUMO

The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, ß-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, ß-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Saccharomyces cerevisiae/imunologia , Strongylocentrotus purpuratus/imunologia , Vibrio/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/genética
11.
Innate Immun ; 19(6): 569-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23405032

RESUMO

Purple sea urchins (Strongylocentrotus purpuratus) express a highly variable set of immune genes called Sp185/333 by two subtypes of coelomocytes: the polygonal and small phagocytes. We report that the Sp185/333 genes and their encoded proteins are also expressed in all of the major organs in the adult sea urchin, including the axial organ, pharynx, esophagus, intestine and gonads. After immune challenge, there is an increase in the level of Sp185/333 mRNA in cells associated with the intestine and axial organ. The Sp185/333 proteins increase in the axial organ, pharynx, esophagus and intestine after challenge. However, the proportion of Sp185/333-positive cells only increases in the axial organ, while there is no change in that proportion in the other organs after challenge. The size range of the major Sp185/333 proteins expressed by organs is broader (5 kDa to > 250 kDa) compared with those in coelomocytes (∼40 kDa to < 250 kDa). Images of the different organs do not clarify whether coelomocytes or parenchymal cells express the Sp185/333 proteins. The increase in levels of Sp185/333 transcripts, protein expression and Sp185/333-positive cells in the axial organ in response to challenge suggests that this organ may have an important role in immunity for this species.


Assuntos
Estruturas Animais/imunologia , Sistema Imunitário/fisiologia , Strongylocentrotus purpuratus/imunologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Variação Genética , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Transcriptoma
12.
Proc Biol Sci ; 279(1732): 1412-20, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21993504

RESUMO

Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species' wide latitudinal range. We examined 9112 polymorphic loci from upstream non-coding and coding regions of genes for signatures of selection with respect to gene function and tissue- and ontogenetic gene expression. We found that genetic differentiation (F(ST)) varied significantly across functional gene classes. The strongest enrichment occurred in the upstream regions of E3 ligase genes, enzymes known to regulate protein abundance during development and environmental stress. We found enrichment for high heterozygosity in genes directly involved in immune response, particularly NALP genes, which mediate pro-inflammatory signals during bacterial infection. We also found higher heterozygosity in immune genes in the southern population, where disease incidence and pathogen diversity are greater. Similar to the major histocompatibility complex in mammals, balancing selection may enhance genetic diversity in the innate immune system genes of this invertebrate. Overall, our results show that how genome-wide polymorphism data coupled with growing databases on gene function and expression can combine to detect otherwise hidden signals of selection in natural populations.


Assuntos
Seleção Genética , Strongylocentrotus purpuratus/genética , Animais , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Feminino , Expressão Gênica , Frequência do Gene , Genoma , Heterozigoto , Imunidade Inata/genética , Masculino , Metagenômica , Polimorfismo Genético , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/metabolismo , Ubiquitina-Proteína Ligases/genética
13.
Dis Model Mech ; 3(5-6): 274-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20354110

RESUMO

Pathogen diversification can alter infection virulence, which in turn drives the evolution of host immune diversification, resulting in countermeasures for survival in this arms race. Somatic recombination of the immunoglobulin gene family members is a very effective mechanism to diversify antibodies and T-cell receptors that function in the adaptive immune system. Although mechanisms to diversify innate immune genes are not clearly understood, a seemingly unlikely source for insight into innate immune diversification may be derived from the purple sea urchin, which has recently had its genome sequenced and annotated. Although there are many differences, some characteristics of the sea urchin make for a useful tool to understand the human immune system. The sea urchin is phylogenetically related to humans although, as a group, sea urchins are evolutionarily much older than mammals. Humans require both adaptive and innate immune responses to survive immune challenges, whereas sea urchins only require innate immune functions. Genes that function in immunity tend to be members of families, and the sea urchin has several innate immune gene families. One of these is the Sp185/333 gene family with about 50 clustered members that encode a diverse array of putative immune response proteins. Understanding gene diversification in the Sp185/333 family in the sea urchin may illuminate new mechanisms of diversification that could apply to gene families that function in innate immunity in humans, such as the killer immunoglobulin-like receptor genes.


Assuntos
Variação Genética , Imunidade Inata/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Imunidade Adaptativa/genética , Animais , DNA Complementar/genética , Humanos , Receptores KIR/genética
14.
Dev Comp Immunol ; 34(3): 235-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19887082

RESUMO

The Sp185/333 system of genes, messages and proteins are expressed in the coelomocytes of the purple sea urchin, Strongylocentrotus purpuratus, and is an extraordinary example of diversification of a putative innate immune response system in an invertebrate. Reviewed here, is the current understanding of this complex system as illustrated by sequence comparisons of the genes, messages and deduced proteins with descriptions of diversity, including preliminary results on genomic organization and descriptions of 185/333 in other echinoids. Sp185/333 gene expression in adults and embryos occurs in response to immune challenge and includes changes in the frequencies of Sp185/333-positive coelomocytes in the adults. The diversity of the Sp185/333 protein repertoire in coelomocytes is far greater than the sequence diversity encoded in the genes, which may be the result of rapid gene recombination, RNA editing and/or low-fidelity transcription, plus post-translational modifications. This review concludes with preliminary results and speculations on protein function.


Assuntos
Sistema Imunitário/fisiologia , Proteínas/genética , Proteínas/imunologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Expressão Gênica , Dados de Sequência Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos
15.
J Immunol ; 182(4): 2203-12, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19201874

RESUMO

185/333 genes and transcripts from the purple sea urchin, Strongylocentrotus purpuratus, predict high levels of amino acid diversity within the encoded proteins. Based on their expression patterns, 185/333 proteins appear to be involved in immune responses. In the present study, one- and two-dimensional Western blots show that 185/333 proteins exhibit high levels of molecular diversity within and between individual sea urchins. The molecular masses of 185/333-positive bands or spots range from 30 to 250 kDa with a broad array of isoelectric points. The observed molecular masses are higher than those predicted from mRNAs, suggesting that 185/333 proteins form strong associations with other molecules or with each other. Some sea urchins expressed >200 distinct 185/333 proteins, and each animal had a unique suite of the proteins that differed from all other individuals. When sea urchins were challenged in vivo with pathogen-associated molecular patterns (PAMPs; bacterial LPS and peptidoglycan), the expression of 185/333 proteins increased. More importantly, different suites of 185/333 proteins were expressed in response to different PAMPs. This suggests that the expression of 185/333 proteins can be tailored toward different PAMPs in a form of pathogen-specific immune response.


Assuntos
Proteínas/imunologia , Strongylocentrotus purpuratus/imunologia , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas , Proteínas/química , Proteínas/genética , Proteômica , Strongylocentrotus purpuratus/genética
16.
J Immunol ; 181(12): 8585-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050278

RESUMO

The 185/333 gene family is highly expressed in two subsets of immune cells in the purple sea urchin in response to immune challenges. The genes encode a surprisingly diverse set of transcripts, which is a function of the variable presence or absence of blocks of shared sequences, known as elements that generate element patterns. Diversity is also the result of a significant level of point mutations. Together, variable element patterns and single nucleotide polymorphisms result in many unique transcripts. The 185/333 genes only have two exons, with the variable element patterns encoded entirely within the second exon. The diversity of the gene family may be the result of frequent recombination among the 185/333 genes that generates a mosaic distribution of element sequences among the genes. A comparative analysis of the sequences for the genes and messages from individual sea urchins indicates that these two sequence sets have largely different nucleotide sequences and appear to use different element patterns. Furthermore, the nucleotide substitution patterns between genes and messages reveal a strong bias toward transitions, particularly cytidine to uridine conversions. These data are consistent with cytidine deaminase activity and may represent a novel form of immunological diversification in an invertebrate immune response system.


Assuntos
Sequência de Bases , Variação Genética/imunologia , Família Multigênica/imunologia , Processamento Pós-Transcricional do RNA/imunologia , RNA Mensageiro/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Animais , DNA Complementar/química , DNA Complementar/genética , Dados de Sequência Molecular , Edição de RNA/imunologia , RNA Mensageiro/isolamento & purificação , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência
17.
J Mol Biol ; 379(4): 912-28, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18482736

RESUMO

The genome of the purple sea urchin contains numerous large gene families with putative immunological functions. One gene family, known as 185/333, is characterized by extraordinary molecular diversity resulting from single nucleotide polymorphisms and the presence or the absence of 27 large blocks of sequences known as elements. The mosaic composition of elements, known as element patterns, that is present within the members of this gene family is encoded entirely in the second of two exons. Many of the elements correspond to one of six types of repeats that are present throughout the genes. The sequence diversity and variation in element patterns led us to investigate the evolution of the 185/333 gene family. The work presented here suggests that the element patterns are the result of both recombination and duplication and/or deletion of intragenic repeats. Each element is composed of a limited number of similar but distinct sequences, and their distribution among the 185/333 genes suggests frequent recombination within this gene family. Phylogenetic analyses of five 185/333 elements and two regions of the intron were performed using two tests: incongruence length difference and incongruence permutation. Results indicated that each pair of sequence segments was incongruent, suggesting that recombination occurs frequently along the length of the genes, including both the intron and the second exon, and that recombination is not restricted to intact elements. Paradoxically, the high level of similarity among the elements indicated that the 185/333 genes appear to be the result of a recent diversification. These results add to the growing body of evidence suggesting that invertebrate immune systems are not simple and static, but are dynamic and highly complex, and may employ group-specific mechanisms for diversification.


Assuntos
Família Multigênica , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Animais , Sequência de Bases , DNA/genética , Evolução Molecular , Éxons , Duplicação Gênica , Variação Genética , Imunidade Inata/genética , Íntrons , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico
18.
J Cell Sci ; 121(Pt 3): 339-48, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18198192

RESUMO

The current paradigm proposes that the innate immune systems of invertebrates are much more complex than previously thought. The highly diverse 185/333 gene family in the purple sea urchin encodes a family of closely related proteins of varying length and sequence composition. Subsets of small phagocytes and polygonal cells express 185/333 proteins with localization on the surface of the small phagocytes and within perinuclear vesicles in both cell types. In short-term cultures, coelomocytes form small aggregates that progress to syncytia that are thought to be equivalent to encapsulation in vivo. These aggregates were found to be enriched for 185/333-positive (185/333(+)) small phagocytes. In response to lipopolysaccharide challenge, coelomocytes transiently increased, including frequencies of both 185/333(+) and 185/333-negative (185/333(-)) small phagocytes and 185/333(+) polygonal cells. The 185/333 proteins were present in a broad array of sizes, most of which were larger than that predicted from the cDNAs. Recombinant 185/333 proteins expressed in bacteria and insect cells were also larger than expected, suggesting that the proteins dimerize and multimerize. The diversity of the 185/333 proteins, their expression in response to immune challenge, and their cellular localization suggests this protein family and the small phagocytes have an important immunological role in the sea urchin.


Assuntos
Proteínas/metabolismo , Strongylocentrotus purpuratus/metabolismo , Animais , Dimerização , Escherichia coli/genética , Expressão Gênica , Imunidade Inata , Lipopolissacarídeos/farmacologia , Microscopia Confocal , Peso Molecular , Família Multigênica , Fagócitos/imunologia , Fagócitos/metabolismo , Estrutura Quaternária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
19.
BMC Mol Biol ; 8: 16, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17331248

RESUMO

BACKGROUND: A diverse set of transcripts called 185/333 is strongly expressed in sea urchins responding to immune challenge. Optimal alignments of full-length 185/333 cDNAs requires the insertion of large gaps that define 25 blocks of sequence called elements. The presence or absence of individual elements also defines a specific element pattern for each message. Individual sea urchins were challenged with pathogen associated molecular patterns (PAMPs) (lipopolysaccharide, beta-1,3-glucan, or double stranded RNA), and changes in the 185/333 message repertoire were followed over time. RESULTS: Each animal expressed a diverse set of 185/333 messages prior to challenge and a 0.96 kb message was the predominant size after challenge. Sequence analysis of the cloned messages indicated that the major element pattern expressed in immunoquiescent sea urchins was either C1 or E2.1. In contrast, most animals responding to lipopolysaccharide, beta-1,3-glucan or injury, predominantly expressed messages of the E2 pattern. In addition to the major patterns, extensive element pattern diversity was observed among the different animals before and after challenge. Nucleotide sequence diversity of the transcripts increased in response to beta-1,3-glucan, double stranded RNA and injury, whereas diversity decreased in response to LPS. CONCLUSION: These results illustrate that sea urchins appear to be able to differentiate among different PAMPs by inducing the transcription of different sets of 185/333 genes. Furthermore, animals may share a suite of 185/333 genes that are expressed in response to common pathogens, while also maintaining a large number of unique genes within the population.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , RNA de Cadeia Dupla/farmacologia , Strongylocentrotus purpuratus/genética , beta-Glucanas/farmacologia , Animais , Perfilação da Expressão Gênica , Rearranjo Gênico , Genes , Variação Genética , Imunidade Inata/genética , Dados de Sequência Molecular , Proteoglicanas , RNA Mensageiro/isolamento & purificação , Strongylocentrotus purpuratus/imunologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...