Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Front Immunol ; 15: 1389358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736873

RESUMO

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Genótipo , Células Matadoras Naturais , Receptores KIR , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Masculino , Adulto , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Citomegalovirus/imunologia , Receptores KIR/genética , Pessoa de Meia-Idade , Fatores Sexuais , Fatores Etários , Antígenos CD57 , Teste de Histocompatibilidade , Adulto Jovem , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Antígenos HLA/genética , Antígenos HLA/imunologia , Idoso , Receptores KIR3DL1/genética
2.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158698

RESUMO

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Assuntos
Antígenos HLA-E , Sinais Direcionadores de Proteínas , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Peptídeos/metabolismo , Receptores de Células Matadoras Naturais/metabolismo
3.
Front Immunol ; 14: 1227897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901227

RESUMO

Transplantation of hematopoietic stem cells (HSCT) is a procedure commonly used in treatment of various haematological disorders which is associated with significantly improved survival rates. However, one of its drawbacks is the possibility of development of post-transplant complications, including acute and chronic graft-versus-host disease (GvHD) or CMV infection. Various studies suggested that NK cells and their receptors may affect the transplant outcome. In the present study, patients and donors were found to significantly differ in the distribution of the NKG2A rs7301582 genetic variants - recipients carried the C allele more often than their donors (0.975 vs 0.865, p<0.0001). Increased soluble HLA-E (sHLA-E) levels detected in recipients' serum 30 days after transplantation seemed to play a prognostic and protective role. It was observed that recipients with higher sHLA-E levels were less prone to chronic GvHD (11.65 vs 6.33 pg/mL, p=0.033) or more severe acute GvHD grades II-IV (11.07 vs 8.04 pg/mL, p=0.081). Our results also showed an unfavourable role of HLA-E donor-recipient genetic incompatibility in CMV infection development after transplantation (OR=5.92, p=0.014). Frequencies of NK cells (both CD56dim and CD56bright) expressing NKG2C were elevated in recipients who developed CMV, especially 30 and 90 days post-transplantation (p<0.03). Percentages of NKG2C+ NK cells lacking NKG2A expression were also increased in these patients. Moreover, recipients carrying a NKG2C deletion characterized with decreased frequency of NKG2C+ NK cells (p<0.05). Our study confirms the importance of NK cells in the development of post-transplant complications and highlights the effect of HLA-E and NKG2C genetic variants, sHLA-E serum concentration, as well as NKG2C surface expression on transplant outcome.


Assuntos
Infecções por Citomegalovirus , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Humanos , Infecções por Citomegalovirus/metabolismo , Doença Enxerto-Hospedeiro/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Transplante Homólogo/efeitos adversos , Antígenos de Histocompatibilidade Classe I/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Antígenos HLA-E
4.
Genome Biol ; 24(1): 157, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403156

RESUMO

BACKGROUND: The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS: Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION: Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.


Assuntos
Genoma Humano , Genômica , Animais , Humanos , Duplicações Segmentares Genômicas , Família Multigênica , Centrômero/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética
5.
Gene ; 857: 147181, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623676

RESUMO

The aim of the study was to explore the potential molecular mechanism associated with shear stress on abdominal aortic aneurysm (AAA) progression. This study performed RNA sequencing on AAA patients (SQ), AAA patients after endovascular aneurysm repair (EVAR, SH), and normal controls (NC). Furthermore, we identified the differentially expressed microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNA (cirRNAs) and constructed competing endogenous RNA (ceRNA) networks. Finally, 164 differentially expressed miRNAs, 179 co-differentially expressed lncRNAs, and 440 co-differentially expressed circRNAs among the three groups were obtained. The differentially expressed miRNAs mainly enriched in 325 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Target genes associated with co-differentially expressed genes among the group of SH, SQ, and NC mainly enriched in 66 KEGG pathways. LncRNA-miRNA-mRNA interactions, including 15 lncRNAs, 63 miRNAs and 57 mRNAs, was constructed. CircRNA-miRNA-mRNA ceRNA network included 79 circRNAs, 21 miRNAs, and 49 mRNAs. Among them, KLRC2 and CSTF1, targeted by miR-125b, participated in cell-mediated immunity regulation. MiR-320-related circRNAs and SATB1-AS1 serving as the sponge of miRNAs, such as has-circ-0129245, has-circ-0138746, and has-circ-0139786, were hub genes in ceRNA network. In conclusion, AAA patients might be benefit from EVAR based on various pathways and some molecules, such as miR-125b and SATB1-AS1, related with shear stress.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , RNA Longo não Codificante , Humanos , Aneurisma da Aorta Abdominal/genética , Redes Reguladoras de Genes , Proteínas de Ligação à Região de Interação com a Matriz/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
6.
J Med Virol ; 95(1): e28404, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515427

RESUMO

The severity of COVID-19 is associated with individual genetic host factors. Among these, genetic polymorphisms affecting natural killer (NK) cell responses, as variations in the HLA-E- (HLA-E*0101/0103), FcγRIIIa- (FcγRIIIa-158-F/V), and NKG2C- (KLRC2wt/del ) receptor, were associated with severe COVID-19. Recently, the rs9916629-C/T genetic polymorphism was identified that indirectly shape the human NK cell repertoire towards highly pro-inflammatory CD56bright NK cells. We investigated whether the rs9916629-C/T variants alone and in comparison to the other risk factors are associated with a fatal course of COVID-19. We included 1042 hospitalized surviving and 159 nonsurviving COVID-19 patients as well as 1000 healthy controls. rs9916629-C/T variants were genotyped by TaqMan assays and were compared between the groups. The patients' age, comorbidities, HLA-E*0101/0103, FcγRIIIa-158-F/V, and KLRC2wt/del variants were also determined. The presence of the rs9916629-C allele was a risk factor for severe and fatal COVID-19 (p < 0.0001), independent of the patients' age or comorbidities. Fatal COVID-19 was more frequent in younger patients (<69.85 years) carrying the FcγRIIIa-158-V/V (p < 0.006) and in older patients expressing the KLRC2del variant (p < 0.003). Thus, patients with the rs9916629-C allele have a significantly increased risk for fatal COVID-19 and identification of the genetic variants may be used as prognostic marker for hospitalized COVID-19 patients.


Assuntos
COVID-19 , Células Matadoras Naturais , Polimorfismo Genético , Idoso , Humanos , Alelos , COVID-19/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Fatores de Risco
7.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012691

RESUMO

Adaptive natural killer (NK) cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs) can be expanded in vivo in response to human cytomegalovirus (HCMV) infection. Developing a method to preferentially expand this subset is essential for effective targeting of allogeneic cancer cells. A previous study developed an in vitro method to generate single KIR+ NK cells for enhanced targeting of the primary acute lymphoblastic leukemia cells; however, the expansion rate was quite low. Here, we present an effective expansion method using genetically modified K562-HLA-E feeder cells for long-term proliferation of adaptive NK cells displaying highly differentiated phenotype and comparable cytotoxicity, CD107a, and interferon-γ (IFN-γ) production. More importantly, our expansion method achieved more than a 10,000-fold expansion of adaptive NK cells after 6 weeks of culture, providing a high yield of alloreactive NK cells for cell therapy against cancer.


Assuntos
Infecções por Citomegalovirus , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Citomegalovirus , Antígenos de Histocompatibilidade Classe I , Humanos , Células K562 , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Receptores KIR , Antígenos HLA-E
8.
HLA ; 100(5): 469-478, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35802353

RESUMO

NK cells monitor altered molecular patterns in tumors and infected cells through an ample array of receptors. Two families of evolutionarily distant receptors have converged to enable human NK cells to sense levels of HLA class I ligands, frequently abnormal in altered cells. Whilst different forms of polymorphism are a hallmark of killer-cell immunoglobulin-like receptors and their classic HLA-A, B, and C ligands, genetic diversity of killer-cell lectin-like receptors for the non-classical HLA-E (CD94/NKG2 heterodimers) is less conspicuous and has attracted less attention. A common pattern of diversification in both receptor families is evolution of pairs of inhibitory and activating homologs for a common ligand, the genes encoding activating receptors being more frequently affected by copy number variation (CNV). This is exemplified by the gene encoding the activating NKG2C subunit (KLRC2 or NKG2C), which marks an NK-cell subpopulation that differentiates or expands in response to cytomegalovirus. We have studied NKG2C diversity in 240 South European individuals, using polymerase chain reaction and sequencing methods to assess both gene CNV and single-nucleotide polymorphisms (SNPs) affecting its promoter, coding and 3'-untranslated (3'UT) regions. Sequence analysis revealed eight common SNPs-one in the promoter, two in the coding sequence, and five in the 3'UT region. These SNPs associate strongly with each other, forming three conserved extended haplotypes (frequencies: 0.456, 0.221, and 0.117). Homo- and heterozygous combination of these, together with complete gene deletion (0.175) and additional haplotypes with frequencies lower than 0.015, generate a diversity of NKG2C genotypes of potential immunological importance.


Assuntos
Variações do Número de Cópias de DNA , Antígenos de Histocompatibilidade Classe I , Humanos , Regiões 3' não Traduzidas , Alelos , Genótipo , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA-A/genética , Imunoglobulinas/genética , Lectinas/genética , Ligantes , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética
9.
Oncoimmunology ; 11(1): 2081415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694192

RESUMO

Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity, and the possibility to be applied as 'off-the-shelf' product makes them highly attractive for cell-based immunotherapies. In patients with multiple myeloma (MM), an elevated number of NK cells has been correlated with higher overall-survival rate. However, NK cell function can be impaired by upregulation of inhibitory receptors, such as the immune checkpoint NKG2A. Here, we developed a CRISPR-Cas9-based gene editing protocol that allowed us to knockout about 80% of the NKG2A-encoding killer cell lectin like receptor C1 (KLRC1) locus in primary NK cells. In-depth phenotypic analysis confirmed significant reduction in NKG2A protein expression. Importantly, the KLRC1-edited NK cells showed significantly increased cytotoxicity against primary MM cells isolated from a small cohort of patients, and maintained the NK cell-specific cytokine production. In conclusion, KLRC1-editing in primary NK cells has the prospect of overcoming immune checkpoint inhibition in clinical applications.


Assuntos
Mieloma Múltiplo , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
10.
Front Immunol ; 13: 829228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401541

RESUMO

Natural killer (NK) cells may contribute to antibody-mediated rejection (ABMR) of renal allografts. The role of distinct NK cell subsets in this specific context, such as NK cells expressing the activating receptor NKG2C, is unknown. Our aim was to investigate whether KLRC2 gene deletion variants which determine NKG2C expression affect the pathogenicity of donor-specific antibodies (DSA) and, if so, influence long-term graft survival. We genotyped the KLRC2wt/del variants for two distinct kidney transplant cohorts, (i) a cross-sectional cohort of 86 recipients who, on the basis of a positive post-transplant DSA result, all underwent allograft biopsies, and (ii) 1,860 recipients of a deceased donor renal allograft randomly selected from the Collaborative Transplant Study (CTS) database. In the DSA+ patient cohort, KLRC2wt/wt (80%) was associated with antibody-mediated rejection (ABMR; 65% versus 29% among KLRC2wt/del subjects; P=0.012), microvascular inflammation [MVI; median g+ptc score: 2 (interquartile range: 0-4) versus 0 (0-1), P=0.002], a molecular classifier of ABMR [0.41 (0.14-0.72) versus 0.10 (0.07-0.27), P=0.001], and elevated NK cell-related transcripts (P=0.017). In combined analyses of KLRC2 variants and a functional polymorphism in the Fc gamma receptor IIIA gene (FCGR3A-V/F158), ABMR rates and activity gradually increased with the number of risk genotypes. In DSA+ and CTS cohorts, however, the KLRC2wt/wt variant did not impact long-term death-censored graft survival, also when combined with the FCGR3A-V158 risk variant. KLRC2wt/wt may be associated with DSA-triggered MVI and ABMR-associated gene expression patterns, but the findings observed in a highly selected cohort of DSA+ patients did not translate into meaningful graft survival differences in a large multicenter kidney transplant cohort not selected for HLA sensitization.


Assuntos
Transplante de Rim , Estudos Transversais , Rejeição de Enxerto , Humanos , Isoanticorpos , Transplante de Rim/efeitos adversos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK , Receptores de Células Matadoras Naturais
11.
J Hum Genet ; 67(8): 475-479, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35314764

RESUMO

Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19-22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.


Assuntos
Coinfecção , Variações do Número de Cópias de DNA , Infecções por HIV , Hepatite C , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Coinfecção/genética , Coinfecção/virologia , Infecções por HIV/genética , HIV-1 , Hepatite C/complicações , Hepatite C/genética , Humanos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética
12.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990406

RESUMO

CMV infection remains an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Several investigators have reported that adaptive NKG2C+ NK cells persistently expand during CMV reactivation. In our study, 2 cohorts were enrolled to explore the relationships among the NKG2C genotype, NKG2C+ NK cell reconstitution, and CMV infection. Multivariate analysis showed that donor NKG2C gene deletion was an independent prognostic factor for CMV reactivation and refractory CMV reactivation. Furthermore, adaptive NKG2C+ NK cells' quantitative and qualitative reconstitution, along with their anti-CMV function after transplantation, was significantly lower in patients grafted with NKG2Cwt/del donor cells than in those grafted with NKG2Cwt/wt donor cells. At day 30 after transplantation, quantitative reconstitution of NKG2C+ NK cells was significantly lower in patients with treatment-refractory CMV reactivation than in patients without CMV reactivation and those with nonrefractory CMV reactivation. In humanized CMV-infected mice, we found that, compared with those from NKG2Cwt/del donors, adaptive NKG2C+ NK cells from NKG2Cwt/wt donors induced earlier and stronger expansion of NKG2C+ NK cells as well as earlier and stronger CMV clearance in vivo. In conclusion, donor NKG2C homozygosity contributes to CMV clearance by promoting the quantitative and qualitative reconstruction of adaptive NKG2C+ NK cells after haploidentical allo-HSCT.


Assuntos
Infecções por Citomegalovirus/genética , Rejeição de Enxerto/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células Matadoras Naturais/patologia , Mutação , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Doadores de Tecidos , Adolescente , Adulto , Animais , Linhagem Celular , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , DNA/genética , Análise Mutacional de DNA , Feminino , Seguimentos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Homozigoto , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Camundongos , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Estudos Prospectivos , Transplante Haploidêntico , Ativação Viral , Adulto Jovem
13.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948123

RESUMO

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Assuntos
Sistemas CRISPR-Cas , Proliferação de Células , Regulação da Expressão Gênica , Vetores Genéticos , Ativação Linfocitária , Subfamília C de Receptores Semelhantes a Lectina de Células NK/biossíntese , Receptores KIR2DL2/biossíntese , Receptores KIR2DL3/biossíntese , Retroviridae , Transdução Genética , Morte Celular , Humanos , Células K562 , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Receptores KIR2DL2/genética , Receptores KIR2DL3/genética
14.
PLoS Negl Trop Dis ; 15(12): e0010006, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871302

RESUMO

BACKGROUND: Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. METHODOLOGY/PRINCIPAL FINDINGS: NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. CONCLUSIONS/SIGNIFICANCE: Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.


Assuntos
Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Virus Puumala/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/virologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Virus Puumala/genética , Adulto Jovem
15.
Cell Rep ; 37(3): 109871, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686325

RESUMO

Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.


Assuntos
Citotoxicidade Imunológica , Linfócitos Intraepiteliais/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Idoso , Estudos de Casos e Controles , Proliferação de Células , Autorrenovação Celular , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata , Lactente , Linfócitos Intraepiteliais/imunologia , Células K562 , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais
16.
J Virol ; 95(16): e0041721, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076484

RESUMO

NKG2C is an activating NK cell receptor encoded by a gene having an unexpressed deletion variant. Cytomegalovirus (CMV) infection expands a population of NKG2C+ NK cells with adaptive-like properties. Previous reports found that carriage of the deleted NKG2C- variant was more frequent in people living with HIV (PLWH) than in HIV- controls unexposed to HIV. The frequency of NKG2C+ NK cells positively correlated with HIV viral load (VL) in some studies and negatively correlated with VL in others. Here, we investigated the link between NKG2C genotype and HIV susceptibility and VL set point in PLWH. NKG2C genotyping was performed on 434 PLWH and 157 HIV-exposed seronegative (HESN) subjects. Comparison of the distributions of the three possible NKG2C genotypes in these populations revealed that the frequencies of NKG2C+/+ and NKG2C+/- carriers did not differ significantly between PLWH and HESN subjects, while that of NKG2C-/- carriers was higher in PLWH than in HESN subjects, in which none were found (P = 0.03, χ2 test). We were unable to replicate that carriage of at least 1 NKG2C- allele was more frequent in PLWH. Information on the pretreatment VL set point was available for 160 NKG2C+/+, 83 NKG2C+/-, and 6 NKG2C-/- PLWH. HIV VL set points were similar between NKG2C genotypes. The frequency of NKG2C+ CD3- CD14- CD19- CD56dim NK cells and the mean fluorescence intensity (MFI) of NKG2C expression on NK cells were higher on cells from CMV+ PLWH who carried 2, versus 1, NKG2C+ alleles. We observed no correlations between VL set point and either the frequency or the MFI of NKG2C expression. IMPORTANCE We compared NKG2C allele and genotype distributions in subjects who remained HIV uninfected despite multiple HIV exposures (HESN subjects) with those in the group PLWH. This allowed us to determine whether NKG2C genotype influenced susceptibility to HIV infection. The absence of the NKG2C-/- genotype among HESN subjects but not PLWH suggested that carriage of this genotype was associated with HIV susceptibility. We calculated the VL set point in a subset of 252 NKG2C-genotyped PLWH. We observed no between-group differences in the VL set point in carriers of the three possible NKG2C genotypes. No significant correlations were seen between the frequency or MFI of NKG2C expression on NK cells and VL set point in cytomegalovirus-coinfected PLWH. These findings suggested that adaptive NK cells played no role in establishing the in VL set point, a parameter that is a predictor of the rate of treatment-naive HIV disease progression.


Assuntos
Predisposição Genética para Doença/genética , Infecções por HIV/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Carga Viral/genética , Alelos , Coinfecção/genética , Coinfecção/imunologia , Coinfecção/virologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Feminino , Frequência do Gene , Genótipo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Soronegatividade para HIV/genética , Soronegatividade para HIV/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
17.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807229

RESUMO

Cytomegalovirus (CMV) causes clinical issues primarily in immune-suppressed conditions. CMV-associated anterior uveitis (CMV-AU) is a notable new disease entity manifesting recurrent ocular inflammation in immunocompetent individuals. As patient demographics indicated contributions from genetic background and immunosenescence as possible underlying pathological mechanisms, we analyzed the immunogenetics of the cohort in conjunction with cell phenotypes to identify molecular signatures of CMV-AU. Among the immune cell types, natural killer (NK) cells are main responders against CMV. Therefore, we first characterized variants of polymorphic genes that encode differences in CMV-related human NK cell responses (Killer cell Immunoglobulin-like Receptors (KIR) and HLA class I) in 122 CMV-AU patients. The cases were then stratified according to their genetic features and NK cells were analyzed for human CMV-related markers (CD57, KLRG1, NKG2C) by flow cytometry. KIR3DL1 and HLA class I combinations encoding strong receptor-ligand interactions were present at substantially higher frequencies in CMV-AU. In these cases, NK cell profiling revealed expansion of the subset co-expressing CD57 and KLRG1, and together with KIR3DL1 and the CMV-recognizing NKG2C receptor. The findings imply that a mechanism of CMV-AU pathogenesis likely involves CMV-responding NK cells co-expressing CD57/KLRG1/NKG2C that develop on a genetic background of KIR3DL1/HLA-B allotypes encoding strong receptor-ligand interactions.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Uveíte Anterior/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD57/genética , Antígenos CD57/imunologia , Estudos de Coortes , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/imunologia , Feminino , Genes MHC Classe I/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Hospedeiro Imunocomprometido/imunologia , Hospedeiro Imunocomprometido/fisiologia , Células Matadoras Naturais/fisiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores KIR/genética , Transplante Homólogo/efeitos adversos , Uveíte Anterior/genética , Uveíte Anterior/virologia
18.
Rev Med Virol ; 31(6): e2236, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33793006

RESUMO

Modifications in HLA-I expression are found in many viral diseases. They represent one of the immune evasion strategies most widely used by viruses to block antigen presentation and NK cell response, and SARS-CoV-2 is no exception. These alterations result from a combination of virus-specific factors, genetically encoded mechanisms, and the status of host defences and range from loss or upregulation of HLA-I molecules to selective increases of HLA-I alleles. In this review, I will first analyse characteristic features of altered HLA-I expression found in SARS-CoV-2. I will then discuss the potential factors underlying these defects, focussing on HLA-E and class-I-related (like) molecules and their receptors, the most documented HLA-I alterations. I will also draw attention to potential differences between cells transfected to express viral proteins and those presented as part of authentic infection. Consideration of these factors and others affecting HLA-I expression may provide us with improved possibilities for research into cellular immunity against viral variants.


Assuntos
Variação Antigênica , COVID-19/imunologia , Anergia Clonal , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune , SARS-CoV-2/genética , Alelos , COVID-19/patologia , COVID-19/virologia , Citocinas/genética , Citocinas/imunologia , Citotoxicidade Imunológica , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Celular , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia
19.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765134

RESUMO

Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.


Assuntos
Linfócitos B/imunologia , Citotoxicidade Imunológica/imunologia , Vírus da Ectromelia/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Viroses/imunologia , Animais , Linfócitos B/metabolismo , Linfócitos B/virologia , Efeito Espectador/imunologia , Citotoxicidade Imunológica/genética , Vírus da Ectromelia/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Viroses/virologia
20.
BMC Cancer ; 21(1): 126, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549054

RESUMO

BACKGROUND: Breast cancer is one of the most frequently diagnosed cancers among women worldwide. Alterations in the tumor microenvironment (TME) have been increasingly recognized as key in the development and progression of breast cancer in recent years. To deeply comprehend the gene expression profiling of the TME and identify immunological targets, as well as determine the relationship between gene expression and different prognoses is highly critical. METHODS: The stromal/immune scores of breast cancer patients from The Cancer Genome Atlas (TCGA) were employed to comprehensively evaluate the TME. Then, TME characteristics were assessed, overlapping genes of the top 3 Gene Ontology (GO) terms and upregulated differentially expressed genes (DEGs) were analyzed. Finally, through combined analyses of overall survival, time-dependent receiver operating characteristic (ROC), and protein-protein interaction (PPI) network, novel immune related genes with good prognosis were screened and validated in both TCGA and GEO database. RESULTS: Although the TME did not correlate with the stages of breast cancer, it was closely associated with the subtypes of breast cancer and gene mutations (CDH1, TP53 and PTEN), and had immunological characteristics. Based on GO functional enrichment analysis, the upregulated genes from the high vs low immune score groups were mainly involved in T cell activation, the external side of the plasma membrane, and receptor ligand activity. The top GO terms of the upregulated DEGs from the high vs low immune score groups exhibited better prognosis in breast cancer; 15 of them were related to good prognosis in breast cancer, especially CD226 and KLRC4-KLRK1. CONCLUSIONS: High CD226 and KLRC4-KLRK1 expression levels were identified and validated to correlate with better overall survival in specific stages or subtypes of breast cancer. CD226, KLRC4-KLRK1 and other new targets seem to be promising avenues for promoting antitumor targeted immunotherapy in breast cancer.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Microambiente Tumoral/genética , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Caderinas/genética , Membrana Celular/genética , Membrana Celular/imunologia , Bases de Dados Genéticas , Feminino , Genes p53 , Humanos , Ativação Linfocitária , Mutação , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , PTEN Fosfo-Hidrolase/genética , Prognóstico , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , Curva ROC , Células Estromais/patologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...