Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131581, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615866

RESUMO

Using Escherichia coli as a model, this manuscript delves into the intricate interactions between dimethyl sulfoxide (DMSO) and membranes, cellular macromolecules, and the effects on various aspects of bacterial physiology. Given DMSO's wide-ranging use as a solvent in microbiology, we investigate the impacts of both non-growth inhibitory (1.0 % and 2.5 % v/v) and slightly growth-inhibitory (5.0 % v/v) concentrations of DMSO. The results demonstrate that DMSO causes alterations in bacterial membrane potential, influences the electrochemical characteristics of the cell surface, and exerts substantial effects on the composition and structure of cellular biomolecules. Genome-wide gene expression data from DMSO-treated E. coli was used to further investigate and bolster the results. The findings of this study provide valuable insights into the complex relationship between DMSO and biological systems, with potential implications in drug delivery and cellular manipulation. However, it is essential to exercise caution when utilizing DMSO to enhance the solubility and delivery of bioactive compounds, as even at low concentrations, DMSO exerts non-inert effects on cellular macromolecules and processes.


Assuntos
Membrana Celular , Dimetil Sulfóxido , Escherichia coli , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Escherichia coli/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/farmacologia , Potenciais da Membrana/efeitos dos fármacos
2.
Biomacromolecules ; 25(2): 1047-1057, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38225889

RESUMO

Biodegradable guanidinium-functionalized polycarbonates kill cancer cells via membrane translocation without causing resistance after repeated use, but the exact molecular targets of the polycarbonates are unknown. Here, we investigate the protein targets of the polycarbonates through affinity-based protein profiling and report myeloid-derived growth factor (MYDGF) as the main protein target. Direct binding of the polycarbonates to MYDGF protein is validated through biolayer interferometry. MYDGF is overexpressed in a range of cancer cells, and knockdown of MYDGF is shown to reduce cell proliferation in cancer cells. Through morphological profiling, we also identify similarities in phenotypic effects of the functionalized polycarbonates with topoisomerase I inhibitors, MDM2 inhibitors, and phosphatidylinositol 3kinase inhibitors against cancer cells, suggesting a common mechanism through the PIK3/AKT pathway leading to apoptosis. These findings present the first macromolecular compound targeting MYDGF and may serve as an example for MYDGF modulation as a potential new target for macromolecular chemotherapeutic development.


Assuntos
Antineoplásicos , Proteômica , Substâncias Macromoleculares/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células
3.
Macromol Rapid Commun ; 44(13): e2300104, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37082932

RESUMO

Recent advancements in aggregation-induced emission (AIE) macromolecular materials have brought their attention as potential antibacterial solutions, these materials offer new approaches to cure multidrug-resistant infections and biofilms in bacterial infections as well as real-time monitoring and specific targeting of bacteria. This review provides an overview of the three main categories of AIE macromolecular materials with antibacterial properties; namely AIE-active polymers, AIEgen@polymer complexes, and clusterization-triggered emission (CTE) based polymers. The mechanisms and applications of these materials in antibacterial treatment, wound care, and protective equipment are also discussed. The potential for future developments and application directions of AIE-based antimicrobial materials are finally highlighted.


Assuntos
Antibacterianos , Polímeros , Substâncias Macromoleculares/farmacologia , Polímeros/farmacologia , Antibacterianos/farmacologia , Bactérias
4.
J Am Chem Soc ; 144(5): 2360-2367, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35051337

RESUMO

Considering that hypoxia is closely associated with tumor proliferation, invasion, metastasis, and drug resistance, it is of great significance to overcome hypoxia in tumor treatment. Herein, we report a hypoxia-induced specific photothermal therapy (PTT) based on the photothermal agent of supramolecular perylene diimide radical anions. Hypoxic regions in various tumors display strong reductive ability, and in such environments the supramolecular complex of a perylene diimide derivative and cucurbit[7]uril could be reduced to supramolecular perylene diimide radical anions. Benefiting from the strong NIR absorption and good photothermal conversion performance of the in situ generated supramolecular perylene diimide radical anions, the hypoxia-induced PTT strategy exhibits excellent photothermal therapeutic efficiency as well as good specificity and biological safety. Moreover, hypoxia inducible factor expression of tumors decreases to the normal level after PTT treatment. It is anticipated that such a hypoxia-induced specific PTT strategy opens new horizons for photothermal therapy against hypoxic tumors with improved specificity and safety.


Assuntos
Substâncias Macromoleculares/farmacologia , Neoplasias/terapia , Oxigênio/metabolismo , Perileno/química , Terapia Fototérmica/métodos , Animais , Ânions , Células HeLa , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais
5.
Chem Commun (Camb) ; 58(14): 2247-2258, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35083992

RESUMO

Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.


Assuntos
Antineoplásicos/farmacologia , Imunoterapia , Neoplasias/terapia , Peptídeos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Peptídeos/síntese química , Peptídeos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
6.
Int J Biol Macromol ; 195: 466-474, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34914909

RESUMO

Periplaneta americana L. (PA), a type of animal medicine, has been widely used for wound healing in clinical settings. In order to further investigate the bioactive wound healing substances in PA, crude PA protein-polysaccharide complexes were further purified by cellulose DE-52 and Sephadex G100 chromatography in succession. Among these isolated fractions, two fractions eluted by 0.3 M and 0.5 M NaCl with the higher yield, respectively named PaPPc2 and PaPPc3 respectively, were chosen for the wound healing experiments. Mediated by HPGPC, amino acid and monosaccharide composition analysis, circular dichroism spectrum, glycosylation type, FT-IR, and 1H NMR analysis, the characterization of PaPPc2 and PaPPc3 was implemented. And then, the benefits of PaPPcs to promote cell proliferation, migration, and tube formation of HUVECs were determined in vitro, indicated these fractions would facilitate angiogenesis. Finally, as proof of concept, PaPPc2 and PaPPc3 were employed to accelerate the acute wounds of diabetic mice, involving in increase blood vessels and the amounts of angiogenesis-related cytokines (α-SMA, VEGF, and CD31). In short, this study provides an experimental basis to demonstrate the protein-polysaccharide complexes of Periplaneta americana L. as its wound healing bioactive substances.


Assuntos
Materiais Biocompatíveis , Proteínas de Insetos/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Periplaneta/química , Polissacarídeos/química , Cicatrização , Aminoácidos/química , Animais , Linhagem Celular , Fenômenos Químicos , Diabetes Mellitus Experimental , Humanos , Substâncias Macromoleculares/isolamento & purificação , Medicina Tradicional , Camundongos , Monossacarídeos/química , Análise Espectral
7.
ACS Appl Mater Interfaces ; 14(1): 1-19, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939784

RESUMO

Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.


Assuntos
Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Substâncias Macromoleculares/farmacologia , Adesivos Teciduais/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Substâncias Macromoleculares/química , Osseointegração/efeitos dos fármacos , Adesivos Teciduais/química , Engenharia Tecidual , Alicerces Teciduais/química
8.
Carbohydr Polym ; 277: 118871, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893276

RESUMO

In order to develop better wound dressings, a novel chitosan hydrogel (Cn-Nm gel) was designed and fabricated by using aldehyde-4-arm polyethylene glycol (4r-PEG-CHO) to crosslink the chitosan dissolved in alkaline solution, amino-4-arm polyethylene glycol (4r-PEG-NH2) was chosen as the additive simultaneously. The special dissolution technique and macromolecular crosslinking structure endows the Cn-Nm gels with better performance than that of gels prepared by acid dissolving method with micromolecule crosslinker. First, Cn-Nm gels own strong toughness with 500 kPa tensile strength and 1000% elongation, about 400% swelling ratio and fast water absorption rate. Second, about 300 kPa adhesive strength and strippability between the gels and skin is achieved. More importantly, Cn-Nm gels show nearly 100% antibacterial rate towards Escherichia coli and Staphylococcus aureus. Excellent biocompatibility is also proved by the mouse fibroblasts tests. All of the performance makes this developed chitosan-based gel be the potential candidate as a wound dressing.


Assuntos
Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos
9.
Int J Biol Macromol ; 195: 598-608, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896471

RESUMO

In this study, two acidic Biluochun Tea polysaccharides (BTP-A11 and BTP-A12) were investigated comparatively, which mainly consisted of Rha, Ara, Gal and GalA, possibly suggesting their pectic nature. Structurally, their galacturonan backbones composed of →4)-α-D-GalpA-(1→ and →2)-α-L-Rhap-(1→ were revealed similar, while Ara- and Gal-based branches attached to the O-2 of →2)-α-L-Rhap-(1→ were in distinctive types, proportions, extensibilities and branching degrees. This could lead to their different macromolecular characteristics, where BTP-A11 with higher Mw presented a more hyper-branched chain conformation and relatively higher structural flexibility/compactness, thereby resulting in a lower exclusion effect and an insufficient hydrodynamic volume. Besides, better radical scavenging activities in vitro were also determined for Gal-enriched BTP-A11, where a larger surface area containing more H-donating groups were related to its higher Mw, more hyper-branched conformation, lower DM and higher DA. Therefore, the understanding of structure-property-activity relationships was improved to some degrees for acidic Biluochun Tea polysaccharides, which could be potentially required for more applications in food, medical and cosmetic fields.


Assuntos
Polissacarídeos/química , Polissacarídeos/farmacologia , Chá/química , Fracionamento Químico , Fenômenos Químicos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Substâncias Macromoleculares/química , Substâncias Macromoleculares/isolamento & purificação , Substâncias Macromoleculares/farmacologia , Metilação , Estrutura Molecular , Polissacarídeos/isolamento & purificação , Análise Espectral , Relação Estrutura-Atividade
10.
ACS Appl Mater Interfaces ; 13(49): 58291-58300, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846119

RESUMO

Although great potential hazards and threats still occur from sulfur mustard, there are no specific medicine or therapy for the intoxication of sulfur mustard. Herein, we have demonstrated a supramolecular approach for the detoxification of the sulfur mustard simulant CEES (4) in vitro and in vivo by carboxylatopillar[5]arene potassium salts (CP[5]AK 1) efficiently based on host-guest interactions. The encapsulation of CEES (4) by the cavity of the pillar[5]arene 2 is driven by C-H···π interactions between CEES (4) and the electron-rich cavity of pillar[5]arene 2, which was investigated by 1H NMR titration, density functional theory studies, and the independent gradient model studies. CEES (4) is degradated to the reactive sulfonium salts quickly in aqueous media, resulting in the alkylation of DNA and proteins. The sulfonium salts can be encapsulated by CP[5]AK 1 efficiently, which accelerates the degradation of the sulfonium salts about 14 times. The cell and animal experiments indicated that the bioactivities of the sulfonium salts are inhibited with the formation of stable host-guest complexes, and CP[5]AK 1 has a good therapeutic effect on the damages caused by CEES (4) at either pre- or post-treatments. Due to the low cytotoxicity and good therapeutic effect, the anionic pillar[5]arenes are expected to be developed as specific antidotes against sulfur mustard (HD).


Assuntos
Antídotos , Gás de Mostarda , Animais , Humanos , Ratos , Antídotos/química , Antídotos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia , Células HEK293 , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Estrutura Molecular , Gás de Mostarda/química , Gás de Mostarda/metabolismo , Gás de Mostarda/toxicidade , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/patologia , Sais/química , Sais/metabolismo , Sais/toxicidade
11.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770781

RESUMO

The anticancer activity of natural compounds has recently attracted multidisciplinary research. In this study, the complexation of milk proteins (MP) with Isabgol husk mucilage (IHM) and Ziziphus spina-christi mucilage (NabM) was investigated. In this context, the physicochemical properties of milk protein mucilage complexes (MPMC) including pH, Carr's index, water solubility, and water absorption indices were measured, and the flow behavior was studied. In addition, the amino acid profile, protein digestibility, and phenolic and flavonoids content of MPMC were explored, and the microstructure of the complexes was visualized using transmission electron microscopy. The antioxidant and anticancer potencies of MPMC against two cancerous cell lines, human liver cancer HEPG-2 and breast cancer MCF-7, in comparison with two normal cell lines, namely, Bj-1 and MCF-12F, were tested using neutral red uptake assay. The results revealed that MPMC had scavenging activity against DPPH, ABTS, and HS radicals. Moreover, MPMC has the potential to prevent DNA damage induced by oxidative stress in Type-Fenton's reaction. The results of the neutral red assay showed significant growth inhibition of both HEPG-2, MCF-7, whereas no significant cytotoxic effect was detected against Bj-1 and MCF-12F. RT-qPCR results indicated MPMC stimulated apoptosis as revealed by the upregulation of the pro-apoptosis gene markers Casepase-3, p53, Bax. Meanwhile, the anti-apoptosis Bcl-2 gene was downregulated. However, no significant difference was observed in normal cell lines treated with MPMC. In conclusion, MPMC can be considered as a promising anticancer entity that can be used in the development of novel cancer therapeutics with comparable activity and minimal side effects compared to conventional cancer chemotherapies.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Proteínas do Leite/química , Mucilagem Vegetal/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Dano ao DNA/efeitos dos fármacos , Flavonoides , Humanos , Concentração Inibidora 50 , Nanopartículas/química , Nanopartículas/ultraestrutura , Fenóis , Análise Espectral
12.
Acta Chim Slov ; 68(2): 404-413, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34738137

RESUMO

Synthesis of macrocylic enones starting from alkyl ether and triazole as a linker was achieved using click reaction and intramolecular aldol condensation. The newly synthesized macrocyclic enone was successfully utilized as a dipolarophile in 1,3-dipolar cycloaddition. The dipoles generated from hydrazine hydrochloride, hydroxylamine and guanidine hydrochloride were reacted with macrocyclic enone to give a new class of spiro aminopyrimidines, phenyl pyrazoles and isoxazoles grafted macrocycles in good yield. The structures of newly synthesized compounds were confirmed with IR, NMR and mass spectroscopy and evaluated for their anti cancer activity.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
13.
Inorg Chem ; 60(23): 17911-17925, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34738800

RESUMO

Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its ß-cyclodextrin (ß-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@ß-CD, respectively, while maintaining a significantly lower toxicity profile.


Assuntos
Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Compostos Macrocíclicos/farmacologia , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Células Tumorais Cultivadas
14.
ACS Appl Mater Interfaces ; 13(45): 53574-53585, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34729975

RESUMO

Chemodynamic therapy (CDT) based on the intracellular Fenton reaction has become increasingly explored in cancer treatment. However, the mildly acidic tumor microenvironment and the limited amount of intracellular hydrogen peroxide (H2O2) will create issues for CDT to perform a sustained and high-efficiency treatment. Therefore, how to selectively reduce the pH value and augment the amount of H2O2 in tumor tissues has become the key factor for realizing excellent CDT. Besides, the majority of the reported CDT systems have been constructed from iron-based inorganic or metal-organic framework nanomaterials due to the decisive role of metals in CDT, which restricts the development of CDT. In this study, inspired by the host-guest interactions between pillar[6]arene and ferrocene, a ternary pillar[6]arene-based supramolecular nanocatalyst (GOx@T-NPs) for CDT is reported for the first time. GOx@T-NPs not only exhibited a high-efficiency catalytic ability to convert glucose into hydroxyl radicals (•OH) and to reduce the pH value inside cancer cells for significant enhancement of the CDT effect, but they also showed sensitive glutathione-induced camptothecin (CPT) prodrug release capacity for further improving the efficiency of CDT. Hence, GOx@NPs possessed excellent ability to synergistically enhance the CDT. Additionally, an antitumor mechanism study showed that the prominent tumor inhibition capacity of GOx@T-NPs was derived from trimodal synergistic interactions of CDT, starvation therapy, and chemotherapy. Moreover, GOx@T-NPs manifested good biocompatibility and tumor selectivity with few side effects in major organs. This work broadens the range of materials available for CDT and demonstrates new developments in pillar[n]arene-based multimodal synergistic treatment systems.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Compostos de Amônio Quaternário/química , Animais , Antineoplásicos/farmacologia , Catálise , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/química , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Metalocenos/química , Metalocenos/farmacologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tamanho da Partícula , Terapia Fototérmica , Compostos de Amônio Quaternário/farmacologia
15.
Int J Biol Macromol ; 193(Pt B): 1572-1586, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743030

RESUMO

The ecofriendly cellulose and gelatin provided sustainable and abundant sugars: d-ribofuranose, and 2-Deoxy-ribofuranose (starting reactants for preparative synthetic green chemistry pathways of charge transfer complexes. The natural available sugars d-ribofuranose, and 2-Deoxy-ribofuranose were obtained from facile hydrolysis of cellulose and gelatin natural macromolecules. Successive, low cost and facile alkaline- and acid hydrolysis of Deoxyribonucleic acid (DNA, from gelatin animal source) and ribonucleic acid (RNA, from cellulose plant source) yield the simple sugars: d-ribofuranose and 2-Deoxy-ribofuranose. Eight optically and biologically active charge transfer complexes were prepared from the reaction of the above sugars efficiently intercalated with two new prepared thiophene Schiff Lewis (electron donors) bases: 2-((2Hydroxybenzylidene) amino)-4, 5, 6, 7-tetrahydrobenzo [b] thiophene-3-carbonitrile (D1, 2-((Furan-2ylmethylene) amino) 4,5,6,7 tetrahydrobenzo [b] thiophene-3-carbonitrile (D2). The chemical structures of these prepared Schiff bases were confirmed using the mass spectra. The successful intercalation of the sugar units with the Lewis bases was ascertained using powder x ray diffraction. The molecular structures of the reaction products were proposed based on FTIR, 1H NMR. The optical activity of charge transfer complexes were confirmed using UV-Vis. Absorption spectroscopy. The surface morphology, microstructures, and particle size of the donors and charge transfer complexes were determined using scanning electron microscopy (SEM). The Lewis bases (D1) and (D2) showed no antimicrobial activity, while their charge transfer complexes showed good antimicrobial activity, suggesting their pharmaceutical and medicinal applications due to the potent biological activity against wide spread microbial microorganisms of Gram positive and Gram positive bacteria as well as some fungal species.


Assuntos
Produtos Biológicos/química , Complexos de Coordenação/química , DNA/química , Substâncias Macromoleculares/química , Bases de Schiff/química , Tiofenos/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Fungos/efeitos dos fármacos , Furanos/química , Furanos/farmacologia , Substâncias Macromoleculares/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , RNA/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Açúcares/química
16.
ACS Appl Mater Interfaces ; 13(45): 53564-53573, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726381

RESUMO

Intelligent drug delivery systems (DDSs) that can improve therapeutic outcomes of antitumor agents and decrease their side effects are urgently needed to satisfy special requirements of treatment of malignant tumors in clinics. Here, the fabrication of supramolecular self-assembled amphiphiles based on the host-guest recognition between a cationic water-soluble pillar[6]arene (WP6A) host and a sodium decanesulfonate guest (G) is reported. The chemotherapeutic agent doxorubicin hydrochloride (DOX) can be encapsulated into the formed vesicle (G/WP6A) to construct supramolecular DDS (DOX@G/WP6A). WP6A affords strong affinities to G to avoid undesirable off-target leakage during delivery. Nanoscaled DOX@G/WP6A is capable of preferentially accumulating in tumor tissue via enhanced permeability and retention (EPR) effect. After internalization by tumor cells, the abundant adenosine triphosphate (ATP) binds competitively with WP6A to trigger the disintegration of self-assembled vesicles with the ensuing release of DOX. In vitro and in vivo research confirmed that DOX@G/WP6A is not only able to promote antitumor efficacy but also reduce DOX-related systemic toxicity. The above favorable findings are ascribed to the formation of ternary self-assembly, which profits from the combination of the factors of the EPR effect and the ATP-triggered release.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Compostos Macrocíclicos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Tensoativos/farmacologia , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Compostos Macrocíclicos/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Camundongos , Camundongos Nus , Estrutura Molecular , Compostos de Amônio Quaternário/química , Tensoativos/síntese química , Tensoativos/química
17.
J Med Chem ; 64(20): 15461-15476, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34662121

RESUMO

Targeted delivery of photosensitizers using hydrophilic and tumor-directing carriers and site-specific activation of their photocytotoxicity are two common strategies to enhance the specificity of anticancer photodynamic therapy. We report herein a novel supramolecular bio-orthogonal approach to integrate these two functions. A ß-cyclodextrin-substituted aza-boron-dipyrromethene-based photosensitizer was first complexed with a ferrocene-substituted black-hole quencher to inhibit its photosensitizing ability. Upon encountering the adamantane moieties that had been delivered to target cancer cells through specific binding of the conjugated peptide to the overexpressed epidermal growth factor receptor, the ferrocene-based guest species were displaced due to the stronger binding interactions between ß-cyclodextrin and adamantane, thereby restoring the photodynamic activity of the photosensitizer. Hence, this two-step process enabled targeted delivery and site-specific activation of the photosensitizer, as demonstrated through a series of experiments in aqueous media, in a range of cancer cell lines and in tumor-bearing nude mice.


Assuntos
Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Compostos de Boro/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , beta-Ciclodextrinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Aza/química , Compostos de Boro/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade , beta-Ciclodextrinas/química
18.
ACS Appl Mater Interfaces ; 13(42): 49692-49704, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34645258

RESUMO

The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções Subcutâneas , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Osteoblastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/química
19.
Angew Chem Int Ed Engl ; 60(51): 26740-26746, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34622541

RESUMO

The delivery of protein into mammalian cells enables the dissection and manipulation of biological processes; however, this potency is challenged by the lack of an efficient protein delivery tool and a means to monitor its intracellular trafficking. Herein, we report that the hierarchical self-assembly of tetraphenylethylene (TPE)-featured metal-organic cages (MOCs) and ß-cyclodextrin-conjugated polyethylenimine can generate fluorescent supramolecular nanoparticles (FSNPs) to deliver protein into neural cells, a cell line that is hard to transfect using conventional strategy. Further, the aggregation-induced emission (AIE) of TPE enabled the fluorescent monitoring of cytosolic protein release. It is found that FSNPs can deliver and release protein into cytosol for subcellular targeting as fast as 18 h post-delivery. Moreover, the delivery of molecular chaperone DJ-1 using FSNPs activates MAPK/ERK signaling of neural cells to protect cells from oxidative stress.


Assuntos
Corantes Fluorescentes/farmacologia , Nanopartículas/química , Células-Tronco Neurais/efeitos dos fármacos , Estilbenos/farmacologia , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Células-Tronco Neurais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Estilbenos/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
20.
J Mater Chem B ; 9(48): 9852-9862, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704586

RESUMO

Inspired by the structure and dynamic weeping lubricating mechanism of articular cartilage, a novel composite coating composed of a textured Y2O3-stabilized ZrO2 (YSZ) ceramics reservoir and silver nanoparticles (AgNPs) hybrid supramolecular hydrogel was developed on the basis of a soft/hard combination strategy. The precursor solution including the poly(ethylene glycol) (PEG)-modified AgNPs and α-cyclodextrins (α-CDs) could be infiltrated deep into (50-60 µm) the pores of a textured YSZ ceramics substrate by a vacuum infiltration method, in situ forming a supramolecular hydrogel within the pores through host-guest inclusion between α-CDs and PEG chains distributed onto the surface of AgNPs. The AgNPs hybrid hydrogel showed thixotropic and thermoresponsive gel-sol transition behavior, low cytotoxicity, and excellent drug-loading capacity, as well as significant antibacterial properties. The textured YSZ ceramics not only provided a hard supporting skeleton and stable reservoir to protect the supramolecular hydrogel from destruction under load-bearing or shear condition, but also allowed retaining the stimuli-responsive gel-sol transition property and drug-release capability of the infiltrated hydrogel, endowing the composite coating with excellent antibacterial properties, and self-lubrication and wear-resistance performance. The composite coating in this work brings a new insight into the design of antibacterial and self-lubricating ceramic coatings for artificial joint applications.


Assuntos
Antibacterianos/farmacologia , Cerâmica/farmacologia , Escherichia coli/efeitos dos fármacos , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cerâmica/síntese química , Cerâmica/química , Hidrogéis/síntese química , Hidrogéis/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...