Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Forensic Sci Int ; 358: 112022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615427

RESUMO

Since its first employment in World War I, chlorine gas has often been used as chemical warfare agent. Unfortunately, after suspected release, it is difficult to prove the use of chlorine as a chemical weapon and unambiguous verification is still challenging. Furthermore, similar evidence can be found for exposure to chlorine gas and other, less harmful chlorinating agents. Therefore, the current study aims to use untargeted high resolution mass spectrometric analysis of chlorinated biomarkers together with machine learning techniques to be able to differentiate between exposure of plants to various chlorinating agents. Green spire (Euonymus japonicus), stinging nettle (Urtica dioica), and feathergrass (Stipa tenuifolia) were exposed to 1000 and 7500 ppm chlorine gas and household bleach, pool bleach, and concentrated sodium hypochlorite. After sample preparation and digestion, the samples were analyzed by liquid chromatography high resolution tandem mass spectrometry (LC-HRMS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS). More than 150 chlorinated compounds including plant fatty acids, proteins, and DNA adducts were tentatively identified. Principal component analysis (PCA) and linear discriminant analysis (LDA) showed clear discrimination between chlorine gas and bleach exposure and grouping of the samples according to chlorine concentration and type of bleach. The identity of a set of novel biomarkers was confirmed using commercially available or synthetic reference standards. Chlorodopamine, dichlorodopamine, and trichlorodopamine were identified as specific markers for chlorine gas exposure. Fenclonine (Cl-Phe), 3-chlorotyrosine (Cl-Tyr), 3,5-dichlorotyrosine (di-Cl-Tyr), and 5-chlorocytosine (Cl-Cyt) were more abundantly present in plants after chlorine contact. In contrast, the DNA adduct 2-amino-6-chloropurine (Cl-Ade) was identified in both types of samples at a similar level. None of these chlorinated biomarkers were observed in untreated samples. The DNA adducts Cl-Cyt and Cl-Ade could clearly be identified even three months after the actual exposure. This study demonstrates the feasibility of forensic biomarker profiling in plants to distinguish between exposure to chlorine gas and bleach.


Assuntos
Biomarcadores , Cloro , Análise de Componente Principal , Hipoclorito de Sódio , Espectrometria de Massas em Tandem , Cloro/análise , Biomarcadores/análise , Cromatografia Líquida , Análise Discriminante , Hipoclorito de Sódio/química , Adutos de DNA/análise , Desinfetantes/análise , Substâncias para a Guerra Química/análise , Ácidos Graxos/análise , Proteínas de Plantas/análise
2.
Photochem Photobiol Sci ; 23(4): 763-780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519812

RESUMO

Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase. Probe BDHA provides the ability for detection by the naked eye in terms of colorimetric and fluorometric changes. It has been revealed that the interaction between nerve agents mimics and probe BDHA facilitates spirolactam ring opening due to the phosphorylation process. Thus, the highly fluorescent and colored species developed while probe BDHA is colorless and non-fluorescent due to the intramolecular spirolactam ring. Moreover, probe BDHA can effectively recognize DCP, DCNP, and CEES in the µM range despite many toxic analytes and could be identified based on the response times and quantum yield values. Inexpensive, easily carried paper strips-based test kits were developed for the quick, on-location solid and vapor phase detection of these mustard gas imitating agents (CEES) and nerve gas mimicking agents (DCP and DCNP) without needing expensive equipment or skilled personnel. More remarkably, the test strips' color and fluorescence can be rapidly restored, exposing them to triethyl amine (TEA) for cyclic use, suggesting a potential application in the real-time identification of chemical warfare agents. To accomplish the on-location application of BDHA, we have experimented with soil samples to find traces of DCP. Therefore, the chromo-fluorogenic probe BDHA is a promising, instantaneous, and on-the-spot monitoring tool for the selective detection of DCP, DCNP, and CEES in the presence of others.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda/análogos & derivados , Agentes Neurotóxicos , Nitrofenóis , Organofosfatos , Compostos Organofosforados , Sarina , Agentes Neurotóxicos/química , Acetilcolinesterase , Corantes Fluorescentes/química , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química
3.
Ecotoxicol Environ Saf ; 272: 116018, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325275

RESUMO

Nerve agents (G- and V-series) are a group of extremely toxic organophosphorus chemical warfare agents that we have had the opportunity to encounter many times on a massive scale (Matsumoto City, Tokyo subway and Gulf War). The threat of using nerve agents in terrorist attacks or military operations is still present, even with establishing the Chemical Weapons Convention as the legal framework. Understanding their environmental sustainability and health risks is critical to social security. Due to the risk of contact with dangerous nerve agents and animal welfare considerations, in silico methods were used to assess hydrolysis and biodegradation safely. The environmental fate of the examined nerve agents was elucidated using QSAR models. The results indicate that the investigated compounds released into the environment hydrolyse at a different rate, from extremely fast (<1 day) to very slow (over a year); V-agents undergo slower hydrolysis compared to G-agents. V-agents turned out to be relatively challenging to biodegrade, the ultimate biodegradation time frame of which was predicted as weeks to months, while for G-agents, the overwhelming majority was classified as weeks. In silico methods for predicting various parameters are critical to preparing for the forthcoming application of nerve agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Animais , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/toxicidade , Agentes Neurotóxicos/toxicidade , Hidrólise , Tóquio
4.
Talanta ; 272: 125785, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394750

RESUMO

Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.


Assuntos
Substâncias para a Guerra Química , Nanoestruturas , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Compostos Organofosforados/química , Substâncias para a Guerra Química/análise
5.
Anal Methods ; 16(4): 515-523, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38205668

RESUMO

Nerve agents are the most toxic chemical warfare agents that pose severe threat to human health and public security. In this work, we developed a novel fluorescent probe NZNN based on naphthylimide and o-phenylenediamine to detect nerve agent mimic diethylchlorophosphonate (DCP). DCP underwent a specific nucleophilic reaction with the o-phenylenediamine group of NZNN to produce a significant fluorescence turn-on response with high selectivity, exceptional linearity, bright fluorescence, rapid response (<6 s) and a low detection limit (30.1 nM). Furthermore, a portable sensing device was fabricated for real-time detection of DCP vapor with excellent performance. This portable and sensitive device is favorable for monitoring environmental pollution and defense against chemical warfare agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Fenilenodiaminas , Humanos , Corantes Fluorescentes , Substâncias para a Guerra Química/análise , Compostos Organofosforados
6.
J Chromatogr A ; 1716: 464645, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219625

RESUMO

Alkylphosphonofluoridic Acids (APFA) are the major thermal degradation products of G- and A-series nerve agents and thus play a vital role in the verification analysis of Chemical Weapons Convention. Present study focuses on the development of sample clean-up, derivatization procedures and gas chromatography tandem mass spectrometric analysis of APFA in aqueous samples. APFA were found to be much more delicate than the corresponding alkylphosphonic acids and thus required subtle optimizations. Retention of analytes on silica and polymer-based anion exchangers followed by elution under alkaline conditions yielded best recoveries. Elution under acidic conditions led to partial or complete degradation of the analytes to alkylphosphonic acids. Silylation reactions, particularly with MTBSTFA were found the best in terms of chromatographic responses and resolution of the derivative peaks. Methylations with diazomethane, which requires acidic reaction media, failed to produce desired yields of the derivatives. Under optimized conditions, the analytes produced the recoveries ranging from 76.9 to 94.5% with RSD ≤9.2%. The best LOD's in the tandem mass spectrometric analysis ranged from 13 to 56 ng/ml. The applicability of the method was tested by spiking the analytes in the retained aqueous samples received for the 52nd proficiency test conducted by the Organization for the Prohibition of Chemical Weapons (OPCW).


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Agentes Neurotóxicos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Substâncias para a Guerra Química/análise , Limite de Detecção , Espectrometria de Massas em Tandem , Ácidos , Água/química
7.
Anal Bioanal Chem ; 416(9): 2173-2188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37702771

RESUMO

The objective of the present review is to list, describe, compare, and critically analyze the main procedures developed in the last 20 years for the analysis of digested alkylated peptides, resulting from the adduction of albumin by different mustard agents, and that can be used as biomarkers of exposure to these chemical agents. While many biomarkers of sulfur mustard, its analogues, and nitrogen mustards can easily be collected in urine such as their hydrolysis products, albumin adducts require blood or plasma collection to be analyzed. Nonetheless, albumin adducts offer a wider period of detectability in human exposed patients than urine found biomarkers with detection up to 25 days after exposure to the chemical agent. The detection of these digested alkylated peptides of adducted albumin constitutes unambiguous proof of exposure. However, their determination, especially when they are present at very low concentration levels, can be very difficult due to the complexity of the biological matrices. Therefore, numerous sample preparation procedures to extract albumin and to recover alkylated peptides after a digestion step using enzymes have been proposed prior to the analysis of the targeted peptides by liquid chromatography coupled to mass spectrometry method with or without derivatization step. This review describes and compares the numerous procedures including a number of different steps for the extraction and purification of adducted albumin and its digested peptides described in the literature to achieve detection limits for biological samples exposed to sulfur mustard, its analogues, and nitrogen mustards in the ng/mL range.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Compostos de Mostarda Nitrogenada , Humanos , Gás de Mostarda/análise , Monitoramento Biológico , Estudos Retrospectivos , Espectrometria de Massas em Tandem/métodos , Albuminas/química , Cromatografia Líquida , Compostos de Mostarda Nitrogenada/análise , Peptídeos , Biomarcadores , Nitrogênio/análise , Substâncias para a Guerra Química/análise
8.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067417

RESUMO

Dried urine spot (DUS) is a micro-sample collection technique, known for its advantages in handling, storage and shipping. It also uses only a small volume of urine, an essential consideration in working with small animals, or in acute medical situations. Alkyl-phosphonic acids are the direct and indicative metabolites of organophosphorus chemical warfare agents (OP-CWAs) and are present in blood and urine shortly after exposure. They are therefore crucially important for monitoring casualties in war and terror scenarios. We report here a new approach for the determination of the metabolites of five CWAs in urine using DUS. The method is based on a simple and rapid sample preparation, using only 50 µL of urine, spotted and dried on DBS paper, extracted using 300 µL methanol/water and analyzed via targeted LC-MS/MS. The detection limits for the five CWAs, sarin (GB), soman (GD), cyclosarin (GF), VX and RVX in human urine were from 0.5 to 5 ng/mL. Recoveries of (40-80%) were obtained in the range of 10-300 ng/mL, with a linear response (R2 > 0.964, R > 0.982). The method is highly stable, even with DUS samples stored up to 5 months at room temperature before analysis. It was implemented in a sarin in vivo exposure experiment on mice, applied for the time course determination of isopropyl methylphosphonic acid (IMPA, sarin hydrolysis product) in mice urine. IMPA was detectable even with samples drawn 60 h after the mice's (IN) exposure to 1 LD50 sarin. This method was also evaluated in a non-targeted screening for multiple potential CWA analogs (LC-Orbitrap HRMS analysis followed by automatic peak detection and library searches). The method developed here is applicable for rapid CWA casualty monitoring.


Assuntos
Substâncias para a Guerra Química , Camundongos , Humanos , Animais , Substâncias para a Guerra Química/análise , Sarina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Organofosforados/análise
9.
ACS Sens ; 8(8): 2945-2951, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37581255

RESUMO

Chemical weapons continue to be an ongoing threat that necessitates the improvement of existing detection technologies where new technologies are absent. Lower limits of detection will facilitate early warning of exposure to chemical weapons and enable more rapid deployment of countermeasures. Here, we evaluate two colorimetric gas detection tubes, developed by Draeger Inc., for sarin and sulfur mustard chemical warfare agents and determine their limits of detection using active chemical agent. Being that commercial companies are only able to use chemical agent simulants during sensor development, it is imperative to determine limits of detection using active agent. The limit of detection was determined based on the absence of a reasonably perceptible color response at incrementally lower concentrations. A chemical vapor generator was constructed to produce stable and quantifiable concentrations of chemical agent vapor, with the presence of chemical agent verified and monitored by a secondary detector. The limits of detection of the colorimetric gas detection tubes were determined to be 0.0046 ± 0.0002 and 2.1 ± 0.3 mg/m3 for sarin and sulfur mustard, respectively. The response of the sarin detection tube was readily observable with little issue. The sulfur mustard detection tube exhibited a weaker response to active agent compared to the simulant that was used during development, which will affect their concept of operations in real-world detection scenarios.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Substâncias para a Guerra Química/análise , Gás de Mostarda/análise , Sarina , Limite de Detecção , Colorimetria , Gases
10.
Anal Methods ; 15(23): 2861-2867, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37264865

RESUMO

Sulfur mustard (SM) is an important chemical warfare agent (CWA) and has been used frequently in various conflicts. It is important to develop a facile, rapid, sensitive and selective detection method for SM. In this work, we constructed a novel fluorescent probe PCS capable of generating active sensing species for rapid and selective detection of SM and its simulant CEES (2-chloroethyl ethyl sulfide). PCS exhibits excellent chemical and photostability and can generate reactive species in situ for rapid (within 90 s, at 60 °C) and selective detection of SM and CEES in solution with high sensitivity (∼nM level). Moreover, PCS could enable the detection of mustards in situ. A test strip with PCS and KOH was prepared and realized the sensitive and selective detection of CEES in the gas phase. In addition, the PCS probe can realize facile and rapid detection of CEES-contaminated surfaces by spraying its sensing system (ethanol solution containing PCS and KOH). The sensing mechanism was well demonstrated through the separation and characterization of the sensing product.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Gás de Mostarda/análise , Gás de Mostarda/química , Corantes Fluorescentes , Substâncias para a Guerra Química/análise
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122936, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269661

RESUMO

Despite the largely tranquil environment in which humans live, a chemical terrorism attack is still a public safety problem, for which the capacity to quickly and accurately detect chemical warfare agents (CWAs) constitute a significant barrier. In this study, a straightforward fluorescent probe based on dinitrophenylhydrazine has been synthesised. It exhibits great selectivity and sensitivity for the nerve agent mimicking dimethyl chlorophosphate (DMCP) in the MeOH solution. Dinitrophenylhydrazine-oxacalix[4]arene (DPHOC), a 2,4-dinitrophenylhydrazine (2,4-DNPH) derivative, was synthesised and characterized with NMR and ESI-MS. Photophysical behavior, specially spectrofluorometric analysis was introduced to investigate the sensing phenomena of DPHOC toward dimethyl chlorophosphate (DMCP). The LOD of DPHOC toward DMCP was determined to be 2.1 µM, with a linear range from 5 to 50 µM (R2 = 0.99933). Moreover, DPHOC has been proven to be a promising probe toward the real time detection of DMCP.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/análise , Corantes Fluorescentes/química , Dimiristoilfosfatidilcolina , Compostos Organofosforados/análise , Substâncias para a Guerra Química/análise
12.
Analyst ; 148(11): 2582-2593, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37159231

RESUMO

Diethyl cyanophosphonate (DCNP), a simulant of Tabun, is a common pollutant in pharmaceutical waste and poses a high risk to living organisms. Herein, we demonstrate a compartmental ligand-derived trinuclear zinc(II) cluster [Zn3(LH)2(CH3COO)2] as a probe for the selective detection and degradation of DCNP. It consists of two pentacoordinated Zn(II) [4.4.3.01,5]tridecane cages bridged through a hexacoordinated Zn(II) acetate unit. The structure of the cluster has been elucidated by spectrometric, spectroscopic, and single-crystal X-ray diffraction studies. The cluster shows a two-fold increased emission as compared to the compartmental ligand (at λexc = 370 nm and λem = 463 nm) due to the chelation-enhanced fluorescence effect and acts as a turn-off signal in the presence of DCNP. It can detect DCNP at nano levels up to 186 nM (LOD). The direct bond formation between DCNP and Zn(II) via the -CN group degrades it to inorganic phosphates. The mechanism of the interaction and degradation is supported by spectrofluorimetric experiments, NMR titration (1H and 31P), time of flight mass spectrometry and density functional theory calculations. The applicability of the probe has been further tested by the bio-imaging of zebrafish larvae, analysis of high-protein food products (meat and fish) and vapour phase detection by paper strips.


Assuntos
Substâncias para a Guerra Química , Animais , Substâncias para a Guerra Química/análise , Zinco/análise , Peixe-Zebra , Ligantes , Preparações Farmacêuticas
13.
Anal Chem ; 95(20): 7924-7932, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167435

RESUMO

Complex mixtures, characterized by high density of compounds, challenge trace detection and identification. This is further exacerbated in nontargeted analysis, where a compound of interest may be well hidden under thousands of matrix compounds. We studied the effect of matrix complexity on nontargeted detection (peak picking) by LC-MS/MS (Orbitrap) analysis. A series of ∼20 drugs, V-type chemical warfare agents and pesticides, simulating toxic unknowns, were spiked at various concentrations in several complex matrices including urine, rosemary leaves, and soil extracts. Orbitrap "TraceFinder" software was used to explore their peak intensities in relation to the matrix (peak location in an intensity-sorted list). Average practical detection limits of nontargets were determined. While detection among the first 10,000 peaks was achieved at 0.3-1 ng/mL levels in the extract, for the more realistic "top 1000" list, much higher concentrations were required, approaching 10-30 ng/mL. A negative power law functional dependence between the peak location in an intensity-sorted suspect list and the nontarget concentration is proposed. Controlled complexity was explored with a series of urine dilutions, resulting in an excellent correlation between the power law coefficient and dilution factor. The intensity distribution of matrix peaks was found to spread (unevenly) on a broad range, fitting well the Weibull distribution function with all matrices and extracts. The quantitative approach demonstrated here gives a measure of the actual capabilities and limitations of LC-MS in the analysis of nontargets in complex matrices. It may be used to estimate and compare the complexity of matrices and predict the typical detection limits of unknowns.


Assuntos
Substâncias para a Guerra Química , Praguicidas , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Praguicidas/análise , Substâncias para a Guerra Química/análise , Software , Substâncias Perigosas/análise , Cromatografia Líquida de Alta Pressão/métodos
15.
ACS Sens ; 8(4): 1510-1517, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37036422

RESUMO

Novichok is a recently identified class of neurotoxic organophosphorus compounds that have subsequently been banned by the Organization for Prohibition of Chemical Weapons (OPCW) as chemical warfare agents. Selective, rapid detection of Novichok remains a challenge. Several colorimetric paper-based detection devices have recently been developed for the rapid and selective detection of sarin, VX, and sulfur mustard. In this article, we present a similar colorimetric device designed specifically for the detection of Novichok, based on hydrazone derivatives from 2,4-dinitrophenylhydrazine (2,4-DNPH) impregnated on a glass fiber substrate. Results show that these compounds rapidly and selectively reveal the presence of Novichok agents to the naked eye. The low cost, ease of use, portability, and high selectivity to Novichok of this device complete the detection range of colorimetric paper-based sensors for chemical warfare agents.


Assuntos
Substâncias para a Guerra Química , Substâncias para a Guerra Química/análise , Hidrazonas/química , Colorimetria/métodos , Organofosfatos
16.
Mar Pollut Bull ; 191: 114930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071941

RESUMO

The research aimed to determine the scale of the potential contamination of the southern Baltic by substances from dumped chemical weapons, in the context of applying a strategy for detecting the potential releases of toxic materials. The research included the analysis of total arsenic in sediments, macrophytobenthos, fish, and yperite with derivatives and arsenoorganic compounds in sediments and as an integral part of the warning system the threshold values for arsenic in these matrices were set. Arsenic concentrations in sediments ranged from 11 to 18 mg kg-1 with an increase to 30 mg kg-1 in layers dated to 1940-1960, what was accompanied by the detection of triphenylarsine (600 mg kg-1). The presence of yperite or arsenoorganic-related chemical warfare agents was not confirmed in other areas. Arsenic ranged from 0.14 to 1.46 mg kg-1 in fish and from 0.8 to 3 mg kg-1 in macrophytobenthos.


Assuntos
Arsênio , Substâncias para a Guerra Química , Guerra Química , Gás de Mostarda , Poluentes Químicos da Água , Animais , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/análise , Arsênio/análise , Países Bálticos , Peixes , Poluentes Químicos da Água/análise , Sedimentos Geológicos
17.
Drug Test Anal ; 15(7): 730-744, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36787649

RESUMO

We herein present for the first time a micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) procedure to detect phosphonylated tyrosine (Tyr) and lysine (Lys) residues obtained from human hair exposed to organophosphorus nerve agents (OPNA). In general, toxic OPNA react with endogenous blood proteins causing the formation of adducts representing well-known targets for biomedical analysis to prove exposure. In contrast, no protein-derived biomarker has been introduced so far to document local exposure of hair. Accordingly, we developed and characterized a µLC-ESI MS/HR MS method for the analysis of scalp hair exposed to OPNA in vitro. Type I and Type II keratin from hair was dissolved during lysis, precipitated and subjected to pronase-catalyzed hydrolysis yielding single adducted Lys and in a much higher amount Tyr residues. Exposure to sarin caused the adduction of an isopropyl methylphosphonic acid moiety and exposure to VX yielded adducts of ethyl methylphosphonic acid, well suited as biomarkers of exposure. These were of appropriate stability in the autosampler for 24 h. The biomarker yield obtained from hair of six individuals as well as from hair of six different parts of the body of one individual (armpit, beard, leg, arm, scalp, and pubic) differed reasonably indicating the variable individual protein composition and structure of hair. Exposed hair stored at ambient temperature for 9 weeks with contact to air and daylight showed stability of all adducts and therefore their suitability for verification of exposure.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/metabolismo , Sarina , Lisina , Compostos Organofosforados , Tirosina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores , Cabelo/química , Substâncias para a Guerra Química/análise
18.
Bull Environ Contam Toxicol ; 110(2): 53, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729142

RESUMO

The analysis of nerve agents is the focus of chemical warfare agent determination because of their extreme toxicity. A classical chemical colorimetric method, namely, the Schoenemann reaction, has been developed to detect G agents; however, it has not been utilized for VX analysis mainly because of its low peroxyhydrolysis rate. In this study, based on the mechanism of the Schoenemann reaction, a novel rapid quantitative determination method for VX was developed by optimizing the reaction conditions, such as concentrations of peroxide and the indicator, temperature, and reaction time. Using 2 ml 0.5 wt% sodium perborate as the peroxide source, 1 ml 0.1 wt% benzidine hydrochloride as the indicator, and 1 ml acetone as the co-solvent, VX and GD in ethanol or water solutions could be quantitatively analyzed within 15 min at 60°C. Further experiments based on 31P NMR spectroscopy confirmed the existence of a peroxyphosphate intermediate during the GD assay. This quantitative colorimetry system for VX and GD analysis can be developed as a portable device for the water samples in fieldwork applications.


Assuntos
Substâncias para a Guerra Química , Compostos Organotiofosforados , Colorimetria , Substâncias para a Guerra Química/análise , Compostos Organotiofosforados/análise , Compostos Organotiofosforados/química , Peróxidos , Água
19.
Mar Pollut Bull ; 187: 114601, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652858

RESUMO

Marine environments are globally impacted by vast quantities of munition disposed following both World Wars. Dumped munitions contain conventional explosives, chemicals warfare agents as well as a variety of metals. Field monitoring studies around marine dumpsites report the presence of munition constituents in water and sediment samples. The growing interest and developments in the ocean as a new economic frontier underline the need to remediate existing dumpsites. Here, we provide a comprehensive assessment of the magnitude and potential risks associated with marine munition dumpsites. An overview of the global distribution of dumpsites identifying the most impacted areas is provided, followed by the currently available data on the detection of munition constituents in environmental samples and evidence of their toxic potential to human and environmental health. Finally, existing data gaps are identified and future research needs promoting better understanding of the impact of the dumped material on the marine environment suggested.


Assuntos
Substâncias para a Guerra Química , Substâncias Explosivas , Humanos , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Saúde Ambiental , Monitoramento Ambiental
20.
Water Sci Technol ; 87(1): 336-346, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36640041

RESUMO

The peroxide-based decontaminants had attracted great attention for degradation of chemical warfare agents (CWAs) because of their high performance, non-corrosive and environmental-friendly merits. Hydrogen peroxide can be activated by some organic activators to enhance the oxidation ability. In this work, a novel formula based on sodium percarbonate (SPC) complexed with 1-acetylguanidine (ACG) was investigated for decontamination of sulfur mustard (HD) and VX as CWAs. In the experimental results, the active species acetyl peroxide imide acid in the formula aqueous solution was detected in situ by Raman and 13C NMR spectroscopy. The optimized conditions of the decontamination formula (SPC/ACG) were suggested that, the molar ratio of active oxygen and activator ([O]/[ACG]) was 1:1 while the pH value of the formula aqueous solution was about 9. To achieve the decontamination percentage over 99%, the molar ratio of active oxygen to CWA ((O)/(CWA)) needed to be at least 3 for HD and 7 for VX. Meanwhile, the degradation products detected by gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and ion chromatography (IC) indicated that the oxidation and elimination reactions should have occurred on HD molecule, while the degradation of VX mainly originate from the nucleophilic substitution and oxidation reactions.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Gás de Mostarda/análise , Gás de Mostarda/química , Descontaminação/métodos , Espécies Reativas de Oxigênio , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Peróxidos , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...