Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anal Chim Acta ; 1316: 342820, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969422

RESUMO

This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Temperatura , Técnicas Biossensoriais/métodos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Fibras Ópticas , Limite de Detecção , Tecnologia de Fibra Óptica/métodos , Animais , Genes Virais
2.
Talanta ; 278: 126568, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018763

RESUMO

Although molecular imprinting technology has been widely used in the construction of virus sensors, it is still a great challenge to identify subtypes viruses specifically because of their high similarity in morphology, size and structure. Here, a monoclonal molecular imprinted polymers (MIPs) sensor for recognition of H5N1 is constructed to permit the accurate distinguishing of H5N1 from other influenza A virus (IAV) subtypes. Firstly, H5N1 are immobilized on magnetic microspheres to produce H5N1-MagNPs, then the high affinity nanogel H5N1-MIPs is prepared by solid phase imprinting technique. When H5N1-MIPs is combined with MagNP-H5N1, different concentrations of H5N1 are added for competitive substitution. The quantitative detection of H5N1 is realized by the change of fluorescence intensity of supernatant. As expected, the constructed sensor shows satisfactory selectivity, and can identify the target virus from highly similar IAV subtypes, such as H1N1, H7N9 and H9N2. The sensor was highly sensitive, with a detection limit of 0.58 fM, and a selectivity factor that is comparable to that of other small MIPs sensors is achieved. In addition, the proposed sensor is cheap, with a cost of only RMB 0.08 yuan. The proposed monoclonal sensor provides a new method for the specific recognition of designated virus subtype, which is expected to be used for large-scale screening and accurate treatment of infected people.


Assuntos
Virus da Influenza A Subtipo H5N1 , Impressão Molecular , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Polímeros Molecularmente Impressos/química , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Limite de Detecção , Técnicas Biossensoriais/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Humanos
3.
Virology ; 597: 110121, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917688

RESUMO

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N2 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Vírus Reordenados , Animais , Galinhas/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/genética , Vírus da Influenza A Subtipo H7N2/patogenicidade , Vírus da Influenza A Subtipo H7N2/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Virulência , Filogenia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , China
4.
Anal Biochem ; 693: 115583, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38838931

RESUMO

Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a µPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The µPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the µPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.


Assuntos
Biomarcadores , Medições Luminescentes , Medições Luminescentes/métodos , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Papel , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/genética , Animais , Influenza Aviária/diagnóstico , Influenza Aviária/virologia , DNA Catalítico/química , DNA Catalítico/metabolismo , Aves/virologia , Limite de Detecção , Influenza Humana/diagnóstico , Influenza Humana/virologia , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-737914

RESUMO

Objective: To understand the epidemiological characteristics of human infection with avian influenza A (H7N9) virus in China, and provide evidence for the prevention and control of human infection with H7N9 virus. Methods: The published incidence data of human infection with H7N9 virus in China from March 2013 to April 2017 were collected. Excel 2007 software was used to perform the analysis. The characteristics of distribution of the disease, exposure history, cluster of the disease were described. Results: By the end of April 2017, a total of 1 416 cases of human infection with H7N9 virus were confirmed in China, including 559 deaths, the case fatality rate was 39.5%. In 2016, the case number was lowest (127 cases), with the highest fatality rate (57.5%). The first three provinces with high case numbers were Zhejiang, Guangdong and Jiangsu. The median age of the cases was 55 years and the male to female ratio was 2.3∶1. Up to 66% of cases had clear live poultry exposure history before illness onset, 31% of cases had unknown exposure history and only 3% of the cases had no live poultry exposure history. There were 35 household clusters (5 in 2013, 9 in 2014, 6 in 2015, 5 in 2016, 10 in 2017), which involved 72 cases, accounting for 5% of the total cases. Conclusions: The epidemic of human infection with H7N9 virus in China during 2013-2017 had obvious seasonality and spatial distribution. There was limited family clustering. Infection cases were mostly related to poultry contact.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição por Idade , China/epidemiologia , Análise por Conglomerados , Surtos de Doenças , Epidemias , Incidência , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Aves Domésticas , Distribuição por Sexo
6.
Chinese Journal of Epidemiology ; (12): 1465-1471, 2018.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-738169

RESUMO

Objective: To understand the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) as well as the disease risk of influenza virus A H7N9 in Guizhou province. Methods: RNAs were extracted and sequenced from HA and NA genes of H7N9 virus strains obtained from 18 cases of human infection with H7N9 virus and 6 environmental swabs in Guizhou province during 2014-2017. Then the variation and the genetic evolution of the virus were analyzed by using a series of bioinformatics software package. Results: Homology analysis of HA and NA genes revealed that 2 strains detected during 2014-2015 shared 98.8%-99.2% and 99.2% similarities with vaccine strains A/Shanghai/2/2013 and A/Anhui/1/2013 recommended by WHO, respectively. Two strains detected in 2016 and 14 strains detected in 2017 shared 98.2%-99.3% and 97.6%-98.8% similarities with vaccine strain A/Hunan/02650/2016, respectively. Other 6 stains detected in 2017 shared 99.1%-99.4% and 98.9%-99.3% similarities with strain A/Guangdong/17SF003/2016, respectively. Phylogenetic analysis showed that all the strains were directly evolved in the Yangtze River Delta evolution branch, but they were derived from different small branch. PEVPKRKRTAR↓GLF was found in 6 of 24 strains cleavage site sequences of HA protein, indicating the characteristic of highly pathogenic avian influenza virus. Mutations A134V, G186V and Q226L at the receptor binding sites were found in the HA. All the strains had a stalk deletion of 5 amino acid residue "QISNT" in NA protein, and drug resistance mutation R294K occurred in strain A/Guizhou-Danzhai/18980/2017. In addition, potential glycosylation motifs mutations NCS42NCT were found in the NA of 9 of 24 strains. Conclusions: HA and NA genes of avian influenza A (H7N9) virus showed genetic divergence in Guizhou province during 2014-2017. The mutations of key sites might enhance the virulence of the virus, human beings are more susceptible to it. Hence, the risk of infection is increasing.


Assuntos
Animais , Humanos , Sequência de Bases , Aves , China/epidemiologia , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária , Influenza Humana/virologia , Neuraminidase/genética , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA