Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(9): 5871-5884, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36592213

RESUMO

BACKGROUND: According to the guidelines, PD-L1 expression is a critical indicator for guiding immunotherapy application. According to certain studies, regardless of PD-L1 expression, immunotherapy could be advantageous for individuals with gastric cancer. Therefore, new scoring systems or biomarkers are required to enhance treatment strategies. METHODS: Mass spectrometry and machine learning were used to search for strongly related PD-L1 genes, and the NMF approach was then used to separate gastric cancer patients into two categories. Differentially expressed genes (DEGs) between the two subtypes identified in this investigation were utilized to develop the UBscore predictive model, which was verified by the Gene Expression Omnibus (GEO) database. Coimmunoprecipitation, protein expression, and natural killing (NK) cell coculture experiments were conducted to validate the findings. RESULTS: A total of 123 proteins were identified as PD-L1 interactors that are substantially enriched in the proteasome complex at the mRNA level. Using random forest, 30 UPS genes were discovered in the GSE66229 cohort, and ANAPC7 was experimentally verified as one of 123 PD-L1 interactors. Depending on the expression of PD-L1 and ANAPC7, patients were separated into two subgroups with vastly distinct immune infiltration. Low UBscore was related to increased tumor mutation burden (TMB) and microsatellite instability-high (MSI-H). In addition, chemotherapy medications were more effective in individuals with a low UBscore. Finally, we discovered that ANAPC7 might lead to the incidence of immunological escape when cocultured with NK-92 cells. CONCLUSION: According to our analysis of the PD-L1-related signature in GC, the UBscore played a crucial role in prognosis and had a strong relationship with TMB, MSI, and chemotherapeutic drug sensitivity. This research lays the groundwork for improving GC patient prognosis and treatment response.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patologia , Antígeno B7-H1 , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Prognóstico , Espectrometria de Massas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Instabilidade de Microssatélites
2.
Viruses ; 14(12)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560786

RESUMO

The inhibitor of virus replication (IVR) is an inducible protein that is not virus-target-specific and can be induced by several viruses. The GenBank was interrogated for sequences closely related to the tobacco IVR. Various RNA fragments from tobacco, tomato, and potato and their genomic DNA contained IVR-like sequences. However, IVRs were part of larger proteins encoded by these genomic DNA sequences, which were identified in Arabidopsis as being related to the cyclosome protein designated anaphase-promoting complex 7 (APC7). Sequence analysis of the putative APC7s of nine plant species showed proteins of 558-561 amino acids highly conserved in sequence containing at least six protein-binding elements of 34 amino acids called tetratricopeptide repeats (TPRs), which form helix-turn-helix structures. The structures of Arabidopsis APC7 and the tobacco IVR proteins were modeled using the AlphaFold program and superimposed, showing that IVR had the same structure as the C-terminal 34% of APC7, indicating that IVR was a product of the APC7 gene. Based on the presence of various transcription factor binding sites in the APC7 sequences upstream of the IVR coding sequences, we propose that IVR could be expressed by these APC7 gene sequences involving the transcription factor SHE1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Arabidopsis/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Aminoácidos , Replicação Viral , Fatores de Transcrição , N-Acetilglucosaminiltransferases
3.
Cancer Genet ; 268-269: 28-36, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126360

RESUMO

INTRODUCTION: Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS: TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS: According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION: Selected genes were upregulated and had prognostic value in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Segregação de Cromossomos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/genética , Ligases/genética , Ligases/metabolismo
4.
Mol Cell ; 82(1): 90-105.e13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942119

RESUMO

Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.


Assuntos
Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Encéfalo/enzimologia , Heterocromatina/metabolismo , Deficiência Intelectual/enzimologia , Células-Tronco Neurais/enzimologia , Neurogênese , Adolescente , Animais , Antígenos CD , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/genética , Comportamento Animal , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Heterocromatina/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Deficiência Intelectual/psicologia , Inteligência , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Mutação , Células-Tronco Neurais/patologia , Proteólise , Transdução de Sinais , Síndrome , Ubiquitinação , Adulto Jovem
5.
Acta Haematol ; 145(2): 176-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34879367

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) are a novel class of RNAs which occupy gene expression at the transcriptional or post-transcriptional level, involve in many physiological processes, and participate in many diseases, especially in cancer. Our previous study showed 1 altered circRNA named circ-anaphase promoting complex subunit 7 (ANAPC7) that was upregulated in acute myeloid leukemia (AML). To further clear the expression and clinical significance of circ-ANAPC7, we enlarged the sample size and illuminated the diagnostic and monitoring value of circ-ANAPC7 in AML. METHODS: Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was supposed to confirm the expression of circ-ANAPC7 of AML patients. We assessed the correlation of circ-ANAPC7 and clinical variables using the Spearman correlation test. The receiver operating characteristic (ROC) curve was carried out to evaluate the diagnostic value. RESULTS: Circ-ANAPC7 was first found to be upregulated in AML, and its expression was correlated to white blood cell counts in peripheral blood and blast percentage in bone marrow. ROC curve analysis revealed that circ-ANAPC7 has a significant value of auxiliary AML diagnosis (area under the curve = 0.915, p < 0.001). Furthermore, the expression level of circ-ANAPC7 was changed accompanied with disease condition transformation. CONCLUSION: Circ-ANAPC7 was upregulated in newly diagnosed and relapsed AML. It may serve as potential biomarkers for AML patient's diagnosis and monitoring.


Assuntos
Leucemia Mieloide Aguda , RNA Circular , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Biomarcadores , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , RNA , Curva ROC
6.
Cell Rep ; 25(9): 2317-2328.e5, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485802

RESUMO

The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans.


Assuntos
Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proliferação de Células , Células HCT116 , Células HeLa , Humanos , Proteínas Mad2/metabolismo , Mitose , Ubiquitinação
7.
Adv Med Sci ; 60(2): 259-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046517

RESUMO

PURPOSE: Anaphase promoting complex (APC/C) is an E3 ligase enzyme, which ubiquinates various proteins involved in the cell cycle. This protein complex may have a pivotal role in the cell cycle control affecting pathological conditions such as cancer. APC7 and APC2 subunits of the APC/C complex are involved in the substrate recognition and the catalytic reaction, respectively. MATERIALS AND METHODS: In this study, quantitative Real-time PCR was used to analyse APC2 and APC7 expression in different cancer cell lines as well as AML patient's blood cells. RESULTS: The results showed that APC2 and APC7 subunits were both over expressed in cancer cell lines (p=0.008). The mean expression ratio of APC2 and APC7 in different cancer cells were 2.60±0.22 and 4.83±0.11, respectively. An increase in expression of APC2 and APC7 was seen among 12 out of 14 AML patients (85%). There was a significant positive correlation between APC2 upregulation and the detection of splenomegaly in the patients (r=0.808, p=0.001). CONCLUSION: This was the first study suggesting that APC/C upregulation may contribute to the pathogenesis of cancer and can be used as a molecular biomarker to predict the progression and the prognosis of AML.


Assuntos
Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/genética , Linhagem Celular Tumoral , Feminino , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
J Mol Biol ; 427(8): 1748-64, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25490258

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the "Platform" centers around a cullin-RING-like E3 ligase catalytic core; the "Arc Lamp" is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a >200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.


Assuntos
Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
9.
PLoS One ; 8(7): e70168, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922952

RESUMO

IL-17 is the founding member of a family of cytokines and receptors with unique structures and signaling properties. IL-17 is the signature cytokine of Th17 cells, a relatively new T cell population that promotes inflammation in settings of infection and autoimmunity. Despite advances in understanding Th17 cells, mechanisms of IL-17-mediated signal transduction are less well defined. IL-17 signaling requires contributions from two receptor subunits, IL-17RA and IL-17RC. Mutants of IL-17RC lacking the cytoplasmic domain are nonfunctional, indicating that IL-17RC provides essential but poorly understood signaling contributions to IL-17-mediated signaling. To better understand the role of IL-17RC in signaling, we performed a yeast 2-hybrid screen to identify novel proteins associated with the IL-17RC cytoplasmic tail. One of the most frequent candidates was the anaphase promoting complex protein 7 (APC7 or AnapC7), which interacted with both IL-17RC and IL-17RA. Knockdown of AnapC7 by siRNA silencing exerted no detectable impact on IL-17 signaling. However, AnapC5, which associates with AnapC7, was also able to bind IL-17RA and IL-17RC. Moreover, AnapC5 silencing enhanced IL-17-induced gene expression, suggesting an inhibitory activity. Strikingly, AnapC5 also associated with A20 (TNFAIP3), a recently-identified negative feedback regulator of IL-17 signal transduction. IL-17 signaling was not impacted by knockdown of Itch or TAXBP1, scaffolding proteins that mediate A20 inhibition in the TNFα and IL-1 signaling pathways. These data suggest a model in which AnapC5, rather than TAX1BP1 and Itch, is a novel adaptor and negative regulator of IL-17 signaling pathways.


Assuntos
Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-17/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Fator D do Complemento/metabolismo , Cisteína Endopeptidases , Camundongos , Modelos Biológicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Técnicas do Sistema de Duplo-Híbrido , Proteínas ras/metabolismo
10.
J Mol Biol ; 425(22): 4236-48, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583778

RESUMO

The anaphase-promoting complex or cyclosome (APC/C) is a large E3 RING-cullin ubiquitin ligase composed of between 14 and 15 individual proteins. A striking feature of the APC/C is that only four proteins are involved in directly recognizing target proteins and catalyzing the assembly of a polyubiquitin chain. All other subunits, which account for >80% of the mass of the APC/C, provide scaffolding functions. A major proportion of these scaffolding subunits are structurally related. In metazoans, there are four canonical tetratricopeptide repeat (TPR) proteins that form homo-dimers (Apc3/Cdc27, Apc6/Cdc16, Apc7 and Apc8/Cdc23). Here, we describe the crystal structure of the N-terminal homo-dimerization domain of Schizosaccharomyces pombe Cdc23 (Cdc23(Nterm)). Cdc23(Nterm) is composed of seven contiguous TPR motifs that self-associate through a related mechanism to those of Cdc16 and Cdc27. Using the Cdc23(Nterm) structure, we generated a model of full-length Cdc23. The resultant "V"-shaped molecule docks into the Cdc23-assigned density of the human APC/C structure determined using negative stain electron microscopy (EM). Based on sequence conservation, we propose that Apc7 forms a homo-dimeric structure equivalent to those of Cdc16, Cdc23 and Cdc27. The model is consistent with the Apc7-assigned density of the human APC/C EM structure. The four canonical homo-dimeric TPR proteins of human APC/C stack in parallel on one side of the complex. Remarkably, the uniform relative packing of neighboring TPR proteins generates a novel left-handed suprahelical TPR assembly. This finding has implications for understanding the assembly of other TPR-containing multimeric complexes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Multimerização Proteica , Subunidades Proteicas , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/química , Proteínas de Ciclo Celular/química , Humanos , Proteínas de Manutenção de Minicromossomo/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência
11.
Biochem J ; 449(2): 365-71, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23078409

RESUMO

Mechanistic and structural studies of large multi-subunit assemblies are greatly facilitated by their reconstitution in heterologous recombinant systems. In the present paper, we describe the generation of recombinant human APC/C (anaphase-promoting complex/cyclosome), an E3 ubiquitin ligase that regulates cell-cycle progression. Human APC/C is composed of 14 distinct proteins that assemble into a complex of at least 19 subunits with a combined molecular mass of ~1.2 MDa. We show that recombinant human APC/C is correctly assembled, as judged by its capacity to ubiquitinate the budding yeast APC/C substrate Hsl1 (histone synthetic lethal 1) dependent on the APC/C co-activator Cdh1 [Cdc (cell division cycle) 20 homologue 1], and its three-dimensional reconstruction by electron microscopy and single-particle analysis. Successful reconstitution validates the subunit composition of human APC/C. The structure of human APC/C is compatible with the Saccharomyces cerevisiae APC/C homology model, and in contrast with endogenous human APC/C, no evidence for conformational flexibility of the TPR (tetratricopeptide repeat) lobe is observed. Additional density present in the human APC/C structure, proximal to Apc3/Cdc27 of the TPR lobe, is assigned to the TPR subunit Apc7, a subunit specific to vertebrate APC/C.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Recombinantes/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Especificidade por Substrato , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
12.
J Biol Chem ; 284(22): 15137-46, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19091741

RESUMO

Anaphase-promoting complex or cyclosome (APC/C) is an unusual E3 ubiquitin ligase and an essential protein that controls mitotic progression. APC/C includes at least 13 subunits, but no structure has been determined for any tetratricopeptide repeat (TPR)-containing subunit (Apc3 and -6-8) in the TPR subcomplex of APC/C. Apc7 is a TPR-containing subunit that exists only in vertebrate APC/C. Here we report the crystal structure of quad mutant of nApc7 (N-terminal fragment, residues 1-147) of human Apc7 at a resolution of 2.5 A. The structure of nApc7 adopts a TPR-like motif and has a unique dimerization interface, although the protein does not contain the conserved TPR sequence. Based on the structure of nApc7, in addition to previous experimental findings, we proposed a putative homodimeric structure for full-length Apc7. This model suggests that TPR-containing subunits self-associate and bind to adaptors and substrates via an IR peptide in TPR-containing subunits of APC/C.


Assuntos
Complexos Ubiquitina-Proteína Ligase/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Maleabilidade , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Cancer Biol Ther ; 5(7): 760-2, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16861917

RESUMO

APC/C complex has been known to regulate cell cycle progression via its ubiquitin E3 ligase activity that targets a number of cell cycle regulators. In a recent report, it is shown that APC/C interacts with transcription co-activators, CBP and p300, via its APC5 and APC7 subunits. The authors further demonstrate the functional significance of APC/C-CBP/p300 interaction in regulating both transcription and cell cycle progression. These findings have profound implications in unveiling additional functions and regulatory mechanisms of these two seemingly independent molecular modulators.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Viral/genética , Regulação da Expressão Gênica , Complexos Ubiquitina-Proteína Ligase/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular/genética , Humanos , Transcrição Gênica
14.
Nature ; 438(7068): 690-5, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16319895

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a multicomponent E3 ubiquitin ligase that, by targeting protein substrates for 26S proteasome-mediated degradation through ubiquitination, coordinates the temporal progression of eukaryotic cells through mitosis and the subsequent G1 phase of the cell cycle. Other functions of the APC/C are, however, less well defined. Here we show that two APC/C components, APC5 and APC7, interact directly with the coactivators CBP and p300 through protein-protein interaction domains that are evolutionarily conserved in adenovirus E1A. This interaction stimulates intrinsic CBP/p300 acetyltransferase activity and potentiates CBP/p300-dependent transcription. We also show that APC5 and APC7 suppress E1A-mediated transformation in a CBP/p300-dependent manner, indicating that these components of the APC/C may be targeted during cellular transformation. Furthermore, we establish that CBP is required in APC/C function; specifically, gene ablation of CBP by RNA-mediated interference markedly reduces the E3 ubiquitin ligase activity of the APC/C and the progression of cells through mitosis. Taken together, our results define discrete roles for the APC/C-CBP/p300 complexes in growth regulation.


Assuntos
Proteína de Ligação a CREB/metabolismo , Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Transcrição Gênica , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Linhagem Celular , Transformação Celular Neoplásica , Sequência Conservada , Humanos , Mitose , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética
15.
Breast Cancer Res ; 7(2): R238-47, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15743504

RESUMO

INTRODUCTION: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated. METHODS: The expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+. RESULTS: Positive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups. CONCLUSION: These data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Adulto , Idoso , Ciclossomo-Complexo Promotor de Anáfase , Aneuploidia , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Transformação Celular Neoplásica/genética , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Complexos Ubiquitina-Proteína Ligase/genética
16.
EMBO J ; 22(24): 6598-609, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14657031

RESUMO

The anaphase-promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho-sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 and Apc7. In vitro, at least 15 of the mitotic phospho-sites can be generated by cyclin-dependent kinase 1 (Cdk1), and 3 by Polo-like kinase 1 (Plk1). APC phosphorylation by Cdk1, but not by Plk1, is sufficient for increased Cdc20 binding and APC activation. Immunofluorescence microscopy using phospho-antibodies indicates that APC phosphorylation is initiated in prophase during nuclear uptake of cyclin B1. In prometaphase phospho-APC accumulates on centrosomes where cyclin B ubiquitination is initiated, appears throughout the cytosol and disappears during mitotic exit. Plk1 depletion neither prevents APC phosphorylation nor cyclin A destruction in vivo. These observations imply that APC activation is initiated by Cdk1 already in the nuclei of late prophase cells.


Assuntos
Mitose/fisiologia , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC2/metabolismo , Humanos , Espectrometria de Massas , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Timidina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
17.
Curr Biol ; 13(17): 1459-68, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12956947

RESUMO

BACKGROUND: Chromosome segregation and mitotic exit depend on activation of the anaphase-promoting complex (APC) by the substrate adaptor proteins CDC20 and CDH1. The APC is a ubiquitin ligase composed of at least 11 subunits. The interaction of APC2 and APC11 with E2 enzymes is sufficient for ubiquitination reactions, but the functions of most other subunits are unknown. RESULTS: We have biochemically characterized subcomplexes of the human APC. One subcomplex, containing APC2/11, APC1, APC4, and APC5, can assemble multiubiquitin chains but is unable to bind CDH1 and to ubiquitinate substrates. The other subcomplex contains all known APC subunits except APC2/11. This subcomplex can recruit CDH1 but fails to support any ubiquitination reaction. In vitro, the C termini of CDC20 and CDH1 bind to the closely related TPR subunits APC3 and APC7. Homology modeling predicts that these proteins are similar in structure to the peroxisomal import receptor PEX5, which binds cargo proteins via their C termini. APC activation by CDH1 depends on a conserved C-terminal motif that is also found in CDC20 and APC10. CONCLUSIONS: APC1, APC4, and APC5 may connect APC2/11 with TPR subunits. TPR domains in APC3 and APC7 recruit CDH1 to the APC and may thereby bring substrates into close proximity of APC2/11 and E2 enzymes. In analogy to PEX5, the different TPR subunits of the APC might function as receptors that interact with the C termini of regulatory proteins such as CDH1, CDC20, and APC10.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc4 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Western Blotting , Proteínas Cdc20 , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência , Coloração pela Prata
18.
Science ; 279(5354): 1219-22, 1998 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-9469815

RESUMO

The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.


Assuntos
Anáfase , Ciclo Celular/fisiologia , Proteínas Culina , Ligases/química , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc4 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/química , Clonagem Molecular , Proteínas de Helminto/química , Humanos , Ligases/genética , Ligases/metabolismo , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Filogenia , Proteínas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA