Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(50): 20720-20731, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054929

RESUMO

Pituitary gonadotropin hormones are regulated by gonadotropin-releasing hormone (GnRH) via MAPK signaling pathways that stimulate gene transcription of the common α-subunit (Cga) and the hormone-specific ß-subunits of gonadotropin. We have reported previously that GnRH-induced activities at these genes include various histone modifications, but we did not examine histone phosphorylation. This modification adds a negative charge to residues of the histone tails that interact with the negatively charged DNA, is associated with closed chromatin during mitosis, but is increased at certain genes for transcriptional activation. Thus, the functions of this modification are unclear. We initially hypothesized that GnRH might induce phosphorylation of Ser-10 in histone 3 (H3S10p) as part of its regulation of gonadotropin gene expression, possibly involving cross-talk with H3K9 acetylation. We found that GnRH increases the levels of both modifications around the Cga gene transcriptional start site and that JNK inhibition dramatically reduces H3S10p levels. However, this modification had only a minor effect on Cga expression and no effect on H3K9ac. GnRH also increased H3S28p and H3K27ac levels and also those of activated mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 inhibition dramatically reduced H3S28p levels in untreated and GnRH-treated cells and also affected H3K27ac levels. Although not affecting basal Cga expression, MSK1/2 inhibition repressed GnRH activation of Cga expression. Moreover, ChIP analysis revealed that GnRH-activated MSK1 targets the first nucleosome just downstream from the TSS. Given that the elongating RNA polymerase II (RNAPII) stalls at this well positioned nucleosome, GnRH-induced H3S28p, possibly in association with H3K27ac, would facilitate the progression of RNAPII.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/agonistas , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Nucleossomos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sítio de Iniciação de Transcrição , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/enzimologia , Histonas/metabolismo , Lisina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Nucleossomos/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores LHRH/agonistas , Receptores LHRH/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
2.
Endocrine ; 24(1): 25-31, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15249700

RESUMO

The alpha-subunit is common to the heterodimeric glycoprotein hormones and has been highly conserved throughout vertebrate evolution. In an effort to determine if wild-type and engineered human alpha analogs can serve as agonists or antagonists to the human thyroid-stimulating hormone (TSH) receptor (TSHR), a potent alpha mutant, obtained by replacing four amino acid residues with lysine (alpha4K), was assayed and compared with the wild-type alpha-subunit. When added to CHO cells expressing TSHR, alpha4K, and to a very limited extent the fused homodimer, alpha4K-alpha4K, but not alpha, exhibited agonist activity as judged by cAMP production. When yoked to TSHR to yield fusion proteins, neither alpha, alpha4K, alpha-alpha, nor alpha4K-alpha4K activated TSHR, although yoked alpha4K and alpha4K-alpha4K were weak inhibitors of TSH binding to TSHR. The yoked subunit-receptor complexes were, however, functional as evidenced by increased cAMP production in cells co-expressing human TSHbeta and alpha-TSHR, alpha4K-TSHR, alpha-alpha-TSHR, and alpha4K-alpha4K-TSHR. These results demonstrate that agonists to TSHR can be obtained with alpha-subunit analogs and suggest that rational protein engineering may lead to more potent alpha-based derivatives. The differences found between the experimental paradigms of adding free alpha analogs to TSHR and covalent attachment are attributed to con-formational constraints imposed by fusion of the alpha-subunit analog and receptor, and may suggest an important role for a free (C-terminal) alpha-carboxyl in the absence of the beta-subunit.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/agonistas , Receptores da Tireotropina/metabolismo , Animais , Células CHO/efeitos dos fármacos , Células COS/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Humanos , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/metabolismo , Tireotropina Subunidade beta/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA