Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Neurosci ; 39(40): 7840-7852, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31451581

RESUMO

Transient receptor potential melastatin 3 (TRPM3) is a nonselective cation channel that is inhibited by Gßγ subunits liberated following activation of Gαi/o protein-coupled receptors. Here, we demonstrate that TRPM3 channels are also inhibited by Gßγ released from Gαs and Gαq Activation of the Gs-coupled adenosine 2B receptor and the Gq-coupled muscarinic acetylcholine M1 receptor inhibited the activity of TRPM3 heterologously expressed in HEK293 cells. This inhibition was prevented when the Gßγ sink ßARK1-ct (C terminus of ß-adrenergic receptor kinase-1) was coexpressed with TRPM3. In neurons isolated from mouse dorsal root ganglion (DRG), native TRPM3 channels were inhibited by activating Gs-coupled prostaglandin-EP2 and Gq-coupled bradykinin B2 (BK2) receptors. The Gi/o inhibitor pertussis toxin and inhibitors of PKA and PKC had no effect on EP2- and BK2-mediated inhibition of TRPM3, demonstrating that the receptors did not act through Gαi/o or through the major protein kinases activated downstream of G-protein-coupled receptor (GPCR) activation. When DRG neurons were dialyzed with GRK2i, which sequesters free Gßγ protein, TRPM3 inhibition by EP2 and BK2 was significantly reduced. Intraplantar injections of EP2 or BK2 agonists inhibited both the nocifensive response evoked by TRPM3 agonists, and the heat hypersensitivity produced by Freund's Complete Adjuvant (FCA). Furthermore, FCA-induced heat hypersensitivity was completely reversed by the selective TRPM3 antagonist ononetin in WT mice and did not develop in Trpm3-/- mice. Our results demonstrate that TRPM3 is subject to promiscuous inhibition by Gßγ protein in heterologous expression systems, primary neurons and in vivo, and suggest a critical role for this ion channel in inflammatory heat hypersensitivity.SIGNIFICANCE STATEMENT The ion channel TRPM3 is widely expressed in the nervous system. Recent studies showed that Gαi/o-coupled GPCRs inhibit TRPM3 through a direct interaction between Gßγ subunits and TRPM3. Since Gßγ proteins can be liberated from other Gα subunits than Gαi/o, we examined whether activation of Gs- and Gq-coupled receptors also influence TRPM3 via Gßγ. Our results demonstrate that activation of Gs- and Gq-coupled GPCRs in recombinant cells and sensory neurons inhibits TRPM3 via Gßγ liberation. We also demonstrated that Gs- and Gq-coupled receptors inhibit TRPM3 in vivo, thereby reducing pain produced by activation of TRPM3, and inflammatory heat hypersensitivity. Our results identify Gßγ inhibition of TRPM3 as an effector mechanism shared by the major Gα subunits.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Comportamento Animal , Feminino , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Toxina Pertussis/farmacologia , Receptor A2B de Adenosina/fisiologia , Receptor Muscarínico M1/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
2.
Plant J ; 99(2): 231-244, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30882980

RESUMO

Cytosolic calcium concentration ([Ca2+ ]cyt ) and heterotrimeric G-proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao ) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gß subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+ ]cyt oscillation; and inositol 1,4,5-trisphosphate (InsP3) production. Stomata in wild-type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao . By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double-mutants, as well as those of the agg1agg2 Gγ double-mutant, were insensitive to Cao . These behaviors contrast with ABA-regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G-protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus-specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6-detected [Ca2+ ]cyt oscillations in response to Cao , initiating only a single [Ca2+ ]cyt spike. Experimentally imposed [Ca2+ ]cyt oscillations restored stomatal closure in agb1. Yeast two-hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G-protein signaling via AGB1/AGG1/AGG2 is essential for Cao -regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+ -induced Ca2+ release that is likely dependent on Gßγ interaction with PLCs leading to InsP3 production.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Estômatos de Plantas/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 38(9): 2091-2102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002060

RESUMO

Objective- In renal arteries, inhibitors of G protein ßγ subunits (Gßγ) reduce Kv7 activity and inhibit Kv7-dependent receptor-mediated vasorelaxations. However, the mechanisms underlying receptor-mediated relaxation are artery specific. Consequently, the aim of this study was to ascertain the role of Gßγ in Kv7-dependent vasorelaxations of the rat vasculature. Approach and Results- Isometric tension recording was performed in isolated rat renal, mesenteric, and cerebral arteries to study isoproterenol and calcitonin gene-related peptide relaxations. Kv7.4 was knocked down via morpholino transfection while inhibition of Gßγ was investigated with gallein and M119K. Proximity ligation assay was performed on isolated myocytes to study the association between Kv7.4 and G protein ß subunits or signaling intermediaries. Isoproterenol or calcitonin gene-related peptide-induced relaxations were attenuated by Kv7.4 knockdown in all arteries studied. Inhibition of Gßγ with gallein or M119K had no effect on isoproterenol-mediated relaxations in mesenteric artery but had a marked effect on calcitonin gene-related peptide-induced responses in mesenteric artery and cerebral artery and isoproterenol responses in renal artery. Isoproterenol increased association with Kv7.4 and Rap1a in mesenteric artery which were not sensitive to gallein, whereas in renal artery, isoproterenol increased Kv7.4-AKAP (A-kinase anchoring protein) associations in a gallein-sensitive manner. Conclusions- The Gßγ-Kv7 relationship differs between vessels and is an essential requirement for AKAP, but not Rap-mediated regulation of the channel.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Canais de Potássio KCNQ/fisiologia , Músculo Liso Vascular/fisiologia , Vasodilatação , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/fisiologia , Isoproterenol/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Artéria Renal/fisiologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Xantenos/farmacologia
4.
Biosci Biotechnol Biochem ; 82(11): 1922-1930, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30022707

RESUMO

Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR. Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Magnaporthe/patogenicidade , Proteínas Quinases/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Fúngicos , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Hifas/crescimento & desenvolvimento , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Mutação , Proteínas Quinases/genética
5.
Plant Cell Environ ; 41(10): 2475-2489, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29907954

RESUMO

Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor-like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G-protein-coupled-receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1-like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein ß subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt-induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1-independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catharanthus/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Catharanthus/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Hormônios Peptídicos/fisiologia , Fosfotransferases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Espectrofotometria Atômica
6.
J Physiol ; 595(17): 5875-5893, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714121

RESUMO

KEY POINTS: The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT: The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein ßγ subunit (Gßγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cß as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.


Assuntos
Acetilcolina/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Tálamo/fisiologia , Quinases da Família src/fisiologia , Animais , Proteína Tirosina Quinase CSK , Feminino , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Masculino , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Receptores Muscarínicos/fisiologia , Transdução de Sinais , Regulação para Cima
7.
J Physiol ; 595(17): 5895-5912, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715108

RESUMO

KEY POINTS: Ivermectin (IVM) is a widely used antiparasitic drug in humans and pets which activates glutamate-gated Cl- channel in parasites. It is known that IVM binds to the transmembrane domains (TMs) of several ligand-gated channels, such as Cys-loop receptors and P2X receptors. We found that the G-protein-gated inwardly rectifying K+ (GIRK) channel, especially GIRK2, is activated by IVM directly in a Gßγ -independent manner, but the activation is dependent on phosphatidylinositol-4,5-biphosphate (PIP2 ). We identified a critical amino acid residue of GIRK2 for activation by IVM, Ile82, located in the slide helix between the TM1 and the N-terminal cytoplasmic tail domain (CTD). The results demonstrate that the TM-CTD interface in GIRK channel, rather than the TMs, governs IVM-mediated activation and provide us with novel insights on the mode of action of IVM in ion channels. ABSTRACT: Ivermectin (IVM) is a widely used antiparasitic drug in humans and pets which activates glutamate-gated Cl- channel in parasites. It is also known that IVM binds to the transmembrane domains (TMs) of several ligand-gated channels, such as Cys-loop receptors and P2X receptors. In this study, we found that the G-protein-gated inwardly rectifying K+ (GIRK) channel is activated by IVM directly. Electrophysiological recordings in Xenopus oocytes revealed that IVM activates GIRK channel in a phosphatidylinositol-4,5-biphosphate (PIP2 )-dependent manner, and that the IVM-mediated GIRK activation is independent of Gßγ subunits. We found that IVM activates GIRK2 more efficiently than GIRK4. In cultured hippocampal neurons, we also observed that IVM activates native GIRK current. Chimeric and mutagenesis analyses identified an amino acid residue unique to GIRK2 among the GIRK family, Ile82, located in the slide helix between the TM1 and the N-terminal cytoplasmic tail domain (CTD), which is critical for the activation. The results demonstrate that the TM-CTD interface in GIRK channels, rather than the TMs, governs IVM-mediated activation. These findings provide us with novel insights on the mode of action of IVM in ion channels that could lead to identification of new pharmacophores which activate the GIRK channel.


Assuntos
Antiparasitários/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Ivermectina/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Ratos Wistar , Xenopus laevis
8.
J Am Soc Nephrol ; 28(1): 197-208, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27297948

RESUMO

Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein ßγ-subunit (Gßγ), GPCR-kinase 2, and ß-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gßγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gßγ signaling and ET system expression. Notably, systemic pharmacologic Gßγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gßγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gßγ in AKI and suggest GPCR-Gßγ inhibition as a novel therapeutic approach for treating CRS2 and AKI.


Assuntos
Síndrome Cardiorrenal/etiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Insuficiência Cardíaca/complicações , Rim/patologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Fibrose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
9.
Arthritis Rheumatol ; 68(9): 2244-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26990948

RESUMO

OBJECTIVE: Despite considerable advances in the understanding of systemic lupus erythematosus (SLE), there is still an urgent need for new and more targeted treatment approaches. We previously demonstrated that small-molecule blockade of G protein ßγ subunit (Gßγ) signaling inhibits acute inflammation through inhibition of chemokine receptor signal transduction. We undertook this study to determine whether inhibition of Gßγ signaling ameliorates disease in a mouse model of SLE. METHODS: Lupus-prone (NZB × NZW)F1 female mice were prophylactically or therapeutically treated with the small-molecule Gßγ inhibitor gallein. Tissue samples were analyzed by flow cytometry and immunohistochemistry. The development and extent of nephritis were assessed by monitoring proteinuria and by immunohistochemical analysis. Serum immunoglobulin levels were measured by enzyme-linked immunosorbent assay, and total IgG and anti-double-stranded DNA (anti-dsDNA) antibody-secreting cells were measured by enzyme-linked immunospot assay. RESULTS: Gallein inhibited accumulation of T cells and germinal center (GC) B cells in the spleen. Both prophylactic and therapeutic treatment reduced GC size, decreased antibody-secreting cell production in the spleen, and markedly decreased accumulation of autoreactive anti-dsDNA antibody-secreting cells in kidneys. Gallein also reduced immune complex deposition in kidneys. Finally, gallein treatment dramatically inhibited kidney inflammation, prevented glomerular damage, and decreased proteinuria. Mechanistically, gallein inhibited immune cell migration and signaling in response to chemokines in vitro, which suggests that its mechanisms of action in vivo are inhibition of migration of immune cells to sites of inflammation and inhibition of immune cell maturation. CONCLUSION: Overall, these data demonstrate the potential use of gallein or novel inhibitors of Gßγ signaling in SLE treatment.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Lúpus Eritematoso Sistêmico/prevenção & controle , Nefrite/prevenção & controle , Xantenos/uso terapêutico , Animais , Feminino , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos NZB , Nefrite/imunologia , Transdução de Sinais
10.
Mol Pharmacol ; 89(1): 187-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490245

RESUMO

Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by µ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human µ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of µ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via µ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein ßγ (Gßγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[ß-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gßγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gßγ subunits in a voltage-independent manner.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo R/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Receptores Opioides delta/fisiologia , Receptores Opioides kappa/fisiologia , Receptores Opioides mu/fisiologia , Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Subunidades Proteicas/fisiologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas
11.
Plant Signal Behav ; 11(2): e1085275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26431457

RESUMO

Salinity is a major agricultural problem that affects crop yield. Na(+) is transported to the shoot through the transpiration stream. The mutant of the sole Arabidopsis heterotrimeric G protein ß subunit, agb1, is hypersensitive to salinity in part due to a higher transpiration rate. Here, we investigated the direct effect of Na(+) on stomatal opening using detached epidermal peels of wild type and agb1 plants. In both genotypes, NaCl is equally as effective as KCl in mediating stomatal opening at the concentrations tested. In both genotypes, ABA is less effective in inhibiting Na(+) mediated stomatal opening than K(+) mediated stomatal opening. The agb1 mutant is hyposensitive to ABA inhibition of K(+)-mediated but not Na(+)-mediated stomatal opening. These results suggest that the greater transpiration observed in agb1 plants grown in saline conditions is likely not mediated by differential genotypic direct effects of Na(+) on stomatal apertures.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Genótipo , Transpiração Vegetal , Cloreto de Potássio/farmacologia
12.
Mol Cell ; 58(5): 794-803, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25982117

RESUMO

G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors, regulate a wide range of physiological processes, and are the major targets of pharmaceutical drugs. Canonical signaling from GPCRs is relayed to intracellular effector proteins by trimeric G proteins, composed of α, ß, and γ subunits (Gαßγ). Here, we report that G protein ß subunits (Gß) bind to DDB1 and that Gß2 targets GRK2 for ubiquitylation by the DDB1-CUL4A-ROC1 ubiquitin ligase. Activation of GPCR results in PKA-mediated phosphorylation of DDB1 at Ser645 and its dissociation from Gß2, leading to increase of GRK2 protein. Deletion of Cul4a results in cardiac hypertrophy in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a non-canonical function of the Gß protein as a ubiquitin ligase component and a mechanism of feedback regulation of GPCR signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Estabilidade Proteica , Proteólise , Ratos , Ratos Wistar , Transdução de Sinais
13.
Mol Biol Cell ; 26(6): 1188-98, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609085

RESUMO

We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to activation of perinuclear PLCε is not clear. Here we tested the role of G protein ßγ subunits. Gßγ inhibition blocked ET-1-stimulated Golgi PI4P depletion in neonatal and adult ventricular myocytes. Blocking Gßγ at the Golgi inhibited ET-1-dependent PI4P depletion and nuclear PKD activation. Translocation of Gßγ to the Golgi stimulated perinuclear Golgi PI4P depletion and nuclear PKD activation. Finally, blocking Gßγ at the Golgi or PM blocked ET-1-dependent cardiomyocyte hypertrophy. These data indicate that Gßγ regulation of the perinuclear Golgi PI4P pathway and a separate pathway at the PM is required for ET-1-stimulated hypertrophy, and the efficacy of Gßγ inhibition in preventing heart failure maybe due in part to its blocking both these pathways.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Complexo de Golgi/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Cardiomegalia/metabolismo , Células Cultivadas , Hidrólise , Fosfatos de Fosfatidilinositol , Transporte Proteico , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro
14.
Biochemistry ; 54(4): 1077-88, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25551629

RESUMO

The muscarinic M3 receptor (M3R) is a Gq-coupled receptor and is known to interact with many intracellular regulatory proteins. One of these molecules is Gß5-RGS7, the permanently associated heterodimer of G protein ß-subunit Gß5 and RGS7, a regulator of G protein signaling. Gß5-RGS7 can attenuate M3R-stimulated release of Ca(2+) from intracellular stores or enhance the influx of Ca(2+) across the plasma membrane. Here we show that deletion of amino acids 304-345 from the central portion of the i3 loop renders M3R insensitive to regulation by Gß5-RGS7. In addition to the i3 loop, interaction of M3R with Gß5-RGS7 requires helix 8. According to circular dichroism spectroscopy, the peptide corresponding to amino acids 548-567 in the C-terminus of M3R assumes an α-helical conformation. Substitution of Thr553 and Leu558 with Pro residues disrupts this α-helix and abolished binding to Gß5-RGS7. Introduction of the double Pro substitution into full-length M3R (M3R(TP/LP)) prevents trafficking of the receptor to the cell surface. Using atropine or other antagonists as pharmacologic chaperones, we were able to increase the level of surface expression of the TP/LP mutant to levels comparable to that of wild-type M3R. However, M3R-stimulated calcium signaling is still severely compromised. These results show that the interaction of M3R with Gß5-RGS7 requires helix 8 and the central portion of the i3 loop.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Receptor Muscarínico M3/química , Receptor Muscarínico M3/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Colinérgicos/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Dados de Sequência Molecular , Receptor Muscarínico M3/agonistas
15.
PLoS One ; 10(1): e0116385, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635681

RESUMO

Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Desidratação/metabolismo , Regulação para Baixo , Secas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais
16.
Plant J ; 81(3): 388-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25430066

RESUMO

Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex comprises one Gα, one Gß, and one Gγ subunit. However, in addition to the canonical Gγ subunits (class A), plants also possess two unusual, plant-specific classes of Gγ subunits (classes B and C) that have not yet been found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (class B), which is important for membrane anchoring of the protein; the presence of such subunits gives rise to a flexible sub-population of Gß/γ heterodimers that are not necessarily restricted to the plasma membrane. Plants also contain class C Gγ subunits, which are twice the size of canonical Gγ subunits, with a predicted transmembrane domain and a large cysteine-rich extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology have been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a class C Gγ subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Membrana Celular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/análise , Subunidades gama da Proteína de Ligação ao GTP/genética , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
17.
Biochem Pharmacol ; 93(1): 85-91, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25449598

RESUMO

The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gßγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gßγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.


Assuntos
Antipsicóticos/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Piperazinas/farmacologia , Quinolonas/farmacologia , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/fisiologia , Aripiprazol , Relação Dose-Resposta a Droga , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Células HEK293 , Haloperidol/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos
18.
Elife ; 3: e02053, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755289

RESUMO

In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation. DOI: http://dx.doi.org/10.7554/eLife.02053.001.


Assuntos
Região CA1 Hipocampal/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Memória , Plasticidade Neuronal/fisiologia , Proteínas RGS/fisiologia , Receptores de GABA-B/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Células Cultivadas , Camundongos , Transdução de Sinais
19.
Biochemistry ; 53(14): 2329-43, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24568373

RESUMO

G protein ßγ subunits play essential roles in regulating cellular signaling cascades, yet little is known about their distribution in tissues or their subcellular localization. While previous studies have suggested specific isoforms may exhibit a wide range of distributions throughout the central nervous system, a thorough investigation of the expression patterns of both Gß and Gγ isoforms within subcellular fractions has not been conducted. To address this, we applied a targeted proteomics approach known as multiple-reaction monitoring to analyze localization patterns of Gß and Gγ isoforms in pre- and postsynaptic fractions isolated from cortex, cerebellum, hippocampus, and striatum. Particular Gß and Gγ subunits were found to exhibit distinct regional and subcellular localization patterns throughout the brain. Significant differences in subcellular localization between pre- and postsynaptic fractions were observed within the striatum for most Gß and Gγ isoforms, while others exhibited completely unique expression patterns in all four brain regions examined. Such differences are a prerequisite for understanding roles of individual subunits in regulating specific signaling pathways throughout the central nervous system.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Isoformas de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Frações Subcelulares/metabolismo , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem
20.
Cell Res ; 24(4): 417-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24513853

RESUMO

Formation of multi-component signaling complex necrosomes is essential for tumor necrosis factor α (TNF)-induced programmed necrosis (also called necroptosis). However, the mechanisms of necroptosis are still largely unknown. We isolated a TNF-resistant L929 mutant cell line generated by retrovirus insertion and identified that disruption of the guanine nucleotide-binding protein γ 10 (Gγ10) gene is responsible for this phenotype. We further show that Gγ10 is involved in TNF-induced necroptosis and Gß2 is the partner of Gγ10. Src is the downstream effector of Gß2γ10 in TNF-induced necroptosis because TNF-induced Src activation was impaired upon Gγ10 knockdown. Gγ10 does not affect TNF-induced activation of NF-κB and MAPKs and the formation of necrosomes, but is required for trafficking of necrosomes to their potential functioning site, an unidentified subcellular organelle that can be fractionated into heterotypic membrane fractions. The TNF-induced Gßγ-Src signaling pathway is independent of RIP1/RIP3 kinase activity and necrosome formation, but is required for the necrosome to function.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Vesículas Citoplasmáticas/efeitos dos fármacos , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Quinases da Família src/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Vesículas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Necrose/induzido quimicamente , Necrose/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...