Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 14(1): 155, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635126

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease, with no present cure. The progressive loss of MNs is the hallmark of ALS. We have previously shown the therapeutic effects of the phosphatase and tensin homolog (PTEN) inhibitor, potassium bisperoxo (picolinato) vanadium (bpV[pic]), in models of neurological injury and demonstrated significant neuroprotective effects on MN survival. However, accumulating evidence suggests PTEN is detrimental for MN survival in ALS. Therefore, we hypothesized that treating the mutant superoxide dismutase 1 G93A (mSOD1G93A) mouse model of ALS during motor neuron degeneration and an in vitro model of mSOD1G93A motor neuron injury with bpV(pic) would prevent motor neuron loss. To test our hypothesis, we treated mSOD1G93A mice intraperitoneally daily with 400 µg/kg bpV(pic) from 70 to 90 days of age. Immunolabeled MNs and microglial reactivity were analyzed in lumbar spinal cord tissue, and bpV(pic) treatment significantly ameliorated ventral horn motor neuron loss in mSOD1G93A mice (p = 0.003) while not significantly altering microglial reactivity (p = 0.701). Treatment with bpV(pic) also significantly increased neuromuscular innervation (p = 0.018) but did not affect muscle atrophy. We also cultured motor neuron-like NSC-34 cells transfected with a plasmid to overexpress mutant SOD1G93A and starved them in serum-free medium for 24 h with and without bpV(pic) and downstream inhibitor of Akt signaling, LY294002. In vitro, bpV(pic) improved neuronal viability, and Akt inhibition reversed this protective effect (p < 0.05). In conclusion, our study indicates systemic bpV(pic) treatment could be a valuable neuroprotective therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Compostos de Vanádio/uso terapêutico , Esclerose Lateral Amiotrófica/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Humanos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Modelos Animais , Morfolinas/farmacologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Mutação de Sentido Incorreto , Junção Neuromuscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Mutação Puntual , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Compostos de Vanádio/farmacologia
2.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323217

RESUMO

During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.


Assuntos
Envelhecimento , Músculo Esquelético/lesões , Mioblastos Esqueléticos/fisiologia , Junção Neuromuscular/fisiologia , Superóxido Dismutase-1/deficiência , Animais , Feminino , Masculino , Camundongos Knockout
3.
Oxid Med Cell Longev ; 2021: 8847140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613826

RESUMO

The status of reactive oxygen species (ROS) correlates closely with the normal development of the oral and maxillofacial tissues. Oxidative stress caused by ROS accumulation not only affects the development of enamel and dentin but also causes pathological changes in periodontal tissues (periodontal ligament and alveolar bone) that surround the root of the tooth. Although previous studies have shown that ROS accumulation plays a pathologic role in some oral and maxillofacial tissues, the effects of ROS on alveolar bone development remain unclear. In this study, we focused on mandibular alveolar bone development of mice deficient in superoxide dismutase1 (SOD1). Analyses were performed using microcomputerized tomography (micro-CT), TRAP staining, immunohistochemical (IHC) staining, and enzyme-linked immunosorbent assay (ELISA). We found for the first time that slightly higher ROS in mandibular alveolar bone of SOD1(-/-) mice at early ages (2-4 months) caused a distinct enlargement in bone size and increased bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and osteopontin (OPN). With ROS accumulation to oxidative stress level, increased trabecular bone separation (Tb.Sp) and decreased expression of ALP, Runx2, and OPN were found in SOD1(-/-) mice at 6 months. Additionally, dosing with N-acetylcysteine (NAC) effectively mitigated bone loss and normalized expression of ALP, Runx2, and OPN. These results indicate that redox imbalance caused by SOD1 deficiency has dual effects (promotion or inhibition) on mandibular alveolar bone development, which is closely related to the concentration of ROS and the stage of growth. We present a valuable model here for investigating the effects of ROS on mandibular alveolar bone formation and highlight important roles of ROS in regulating tissue development and pathological states, illustrating the complexity of the redox signal.


Assuntos
Processo Alveolar/crescimento & desenvolvimento , Mandíbula/crescimento & desenvolvimento , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/metabolismo , Acetilcisteína/farmacologia , Envelhecimento/patologia , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/metabolismo , Animais , Antioxidantes/farmacologia , Arcada Osseodentária/efeitos dos fármacos , Mandíbula/diagnóstico por imagem , Mandíbula/efeitos dos fármacos , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase-1/deficiência , Microtomografia por Raio-X
4.
Angew Chem Int Ed Engl ; 60(17): 9215-9246, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32144830

RESUMO

Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.


Assuntos
Antioxidantes/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Superóxido Dismutase-1/metabolismo , Biocatálise , Estabilidade Enzimática , Humanos , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Superóxidos/metabolismo
5.
Toxicology ; 448: 152648, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33259822

RESUMO

Mefenamic acid (MFA), one of the nonsteroidal anti-inflammatory drugs (NSAIDs), sometimes causes liver injury. Quinoneimines formed by cytochrome P450 (CYP)-mediated oxidation of MFA are considered to be causal metabolites of the toxicity and are detoxified by glutathione conjugation. A previous study reported that NAD(P)H:quinone oxidoreductase 1 (NQO1) can reduce the quinoneimines, but NQO1 is scarcely expressed in the human liver. The purpose is to identify enzyme(s) responsible for the decrease in MFA-quinoneimine formation in the human liver. The formation of MFA-quinoneimine by recombinant CYP1A2 and CYP2C9 was significantly decreased by the addition of human liver cytosol, and the extent of the decrease in the metabolite formed by CYP1A2 was larger than that by CYP2C9. By column chromatography, superoxide dismutase 1 (SOD1) was identified from the human liver cytosol as an enzyme decreasing MFA-quinoneimine formation. Addition of recombinant SOD1 into the reaction mixture decreased the formation of MFA-quinoneimine from MFA by recombinant CYP1A2. By a structure-activity relationship study, we found that SOD1 decreased the formation of quinoneimines from flufenamic acid and tolfenamic acid, but did not affect those produced from acetaminophen, amodiaquine, diclofenac, and lapatinib. Thus, SOD1 may selectively decrease the quinoneimine formation from fenamate-class NSAIDs. To examine whether SOD1 can attenuate cytotoxicity caused by MFA, siRNA for SOD1 was transfected into CYP1A2-overexpressed HepG2 cells. The leakage of lactate dehydrogenase caused by MFA treatment was significantly increased by knockdown of SOD1. In conclusion, we found that SOD1 can serve as a detoxification enzyme for quinoneimines to protect from drug-induced toxicity.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Ácido Mefenâmico/metabolismo , Quinonas/metabolismo , Superóxido Dismutase-1/biossíntese , Adulto , Idoso , Feminino , Células Hep G2 , Humanos , Masculino , Ácido Mefenâmico/antagonistas & inibidores , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Quinonas/antagonistas & inibidores , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/deficiência
6.
Exp Gerontol ; 130: 110795, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805337

RESUMO

Redox imbalance induces oxidative damage and causes age-related pathologies. Mice lacking the antioxidant enzyme SOD1 (Sod1-/-) exhibit various aging-like phenotypes throughout the body and are used as aging model mice. Recent reports suggested that age-related changes in the intestinal environment are involved in various diseases. We investigated cecal microbiota profiles and gastrointestinal metabolites in wild-type (Sod1+/+) and Sod1-/- mice. Firmicutes and Bacteroidetes were dominant in Sod1+/+ mice, and most of the detected bacterial species belong to these two phyla. Meanwhile, the Sod1-/- mice had an altered Firmicutes and Bacteroidetes ratio compared to Sod1+/+ mice. Among the identified genera, Paraprevotella, Prevotella, Ruminococcus, and Bacteroides were significantly increased, but Lactobacillus was significantly decreased in Sod1-/- mice compared to Sod1+/+ mice. The correlation analyses between cecal microbiota and liver metabolites showed that Bacteroides and Prevotella spp. were grouped into the same cluster, and Paraprevotella and Ruminococcus spp. were also grouped as another cluster. These four genera showed a positive and a negative correlation with increased and decreased liver metabolites in Sod1-/- mice, respectively. In contrast, Lactobacillus spp. showed a negative correlation with increased liver metabolites and a positive correlation with decreased liver metabolites in Sod1-/- mice. These results suggest that the redox imbalance induced by Sod1 loss alters gastrointestinal microflora and metabolites.


Assuntos
Microbioma Gastrointestinal/fisiologia , Superóxido Dismutase-1/deficiência , Envelhecimento , Animais , Firmicutes , Camundongos , Microbiota , Oxirredução
7.
Free Radic Res ; 53(11-12): 1060-1072, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31590572

RESUMO

New Zealand white (NZW) mouse is a mutant strain that has a larval defect in the immune system, and a F1 hybrid between NZW and New Zealand Black mouse spontaneously develops systemic lupus erythematosus (SLE). In meantime, the ablation of superoxide dismutase 1 (Sod1) causes autoimmune haemolytic anaemia, a clinical condition of SLE, in mice with a C57BL/6 background. On the basis of our previous studies, we hypothesised that oxidative stress may trigger this aberrant autoimmunity in NZW mice without crossing with another strain. To validate this, we attempted to establish Sod1-/-/NZW mice but this attempt failed to obtain any objective mouse. The congenic Sod1+/-/NZW male mice were completely infertile because of severe oligozoospermia attributed to a defect in spermatogenesis. The levels of the SOD1 protein were about a half in the testes of the Sod1+/-/NZW mice. Sperm from the Sod1+/-/NZW mice were largely defective and showed quite low fertilising ability in in vitro fertilisation assays. Concomitant with an increase in the oxidatively modified proteins, spermatogenic cells underwent more cell death in the testes of the Sod1+/-/NZW mice compared to those of WT/NZW mice. An examination of immunocompetent cells from Sod1+/-/NZW mice indicated an abnormality in T-cell responses. These collective results suggest that the oxidative stress caused by an SOD1 haploinsufficiency exerts deleterious effects on the testis, either directly on spermatogenic cells or via the destabilisation of the autoimmune response in Sod1+/-/NZW mice.


Assuntos
Heterozigoto , Infertilidade Masculina/genética , Infertilidade Masculina/imunologia , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NZB , Camundongos Knockout , Fenótipo
8.
Invest Ophthalmol Vis Sci ; 60(12): 3740-3751, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31487745

RESUMO

Purpose: Chronic oxidative stress is an important mechanism of disease in aging disorders. We do not have a good model to recapitulate AMD and other retinal disorders in which chronic oxidative stress plays an important role. We hypothesized that mice with a combined deficiency in superoxide dismutase 1 (Sod1), DJ-1 (Park-7), and Parkin (Prkn) (triple knock out, TKO) would have an increased level of chronic oxidative stress in the retina, with anatomic and functional consequences just with aging. Methods: Eyes of TKO and B6J control mice were (1) monitored with optical coherence tomography (OCT) and electroretinography (ERG) over time, and (2) collected for oxidative marker protein analysis by ELISA or immunohistochemistry and for transmission electron microscopy studies. Results: TKO mice developed qualitative disruptions in outer retinal layers in OCT by 3 months, increased accumulation of fundus spots and subretinal microglia by 6 months of age, significant retinal thinning by 9 months, and decreased ERG signal by 12 months. Furthermore, we found increased accumulation of the oxidative marker malondialdehyde (MDA) in the retina and increased basal laminal deposits (BLD) and mitochondria number and size in the retinal pigment epithelium of aging TKO mice. Conclusions: TKO mice can serve as a platform to study retinal diseases that involve chronic oxidative stress, including macular degeneration, retinal detachment, and ischemic retinopathies. In order to model each of these diseases, additional disease-specific catalysts or triggers could be superimposed onto the TKO mice. Such studies could provide better insight into disease mechanisms and perhaps lead to new therapeutic approaches.


Assuntos
Envelhecimento/fisiologia , Proteína Desglicase DJ-1/deficiência , Degeneração Retiniana/metabolismo , Superóxido Dismutase-1/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Biomarcadores/metabolismo , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Proteína Desglicase DJ-1/genética , Retina/metabolismo , Retina/fisiopatologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Superóxido Dismutase-1/genética , Tomografia de Coerência Óptica , Ubiquitina-Proteína Ligases/genética
9.
Biochem Biophys Res Commun ; 517(3): 452-457, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376938

RESUMO

Hepatocyte growth factor (HGF) is a versatile neurotrophic factor that mediates a variety of cellular activities. In this study, we investigated the effects of intramuscularly injected recombinant AAV vectors expressing HGF in two pathologic conditions: the sciatic nerve crush and the SOD1-G93A transgenic mouse models. AAV serotype 6 (rAAV6) was chosen based on its expression levels in, and capability of moving to, the spinal cord from the injected muscle area. In the nerve crush model, rAAV6-HGF was shown to reduce the degree of mechanical allodynia, increase the cross-sectional area of muscle fibers, promote regrowth of peripheral axons, and improve motor functions. In the SOD1-G93A TG mouse model, rAAV6-HGF increased the mass of the tibialis anterior and gastrocnemius, alleviated disease symptoms, and prolonged survival. Improvements in integrity and functions of muscle in these models seemed to have come from the ability of HGF produced from rAAV6-HGF to regulate the expression of various atrogenes through the control of the FOXO signaling pathway. Our findings suggested that intramuscular injection of rAAV6-HGF might be used to relieve various symptoms associated with muscle atrophy and/or nerve damages observed in a majority of neuromuscular diseases.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Fator de Crescimento de Hepatócito/genética , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Superóxido Dismutase-1/genética , Animais , Dependovirus/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Força da Mão/fisiologia , Fator de Crescimento de Hepatócito/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Mutação , Compressão Nervosa/métodos , Junção Neuromuscular/patologia , Teste de Desempenho do Rota-Rod , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Superóxido Dismutase-1/deficiência
10.
Brain ; 142(8): 2230-2237, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31332433

RESUMO

Superoxide dismutase 1 (SOD1) is the principal cytoplasmic superoxide dismutase in humans and plays a major role in redox potential regulation. It catalyses the transformation of the superoxide anion (O2•-) into hydrogen peroxide. Heterozygous variants in SOD1 are a common cause of familial amyotrophic lateral sclerosis. In this study we describe the homozygous truncating variant c.335dupG (p.C112Wfs*11) in SOD1 that leads to total absence of enzyme activity. The resulting phenotype is severe and marked by progressive loss of motor abilities, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Heterozygous carriers have a markedly reduced enzyme activity when compared to wild-type controls but show no overt neurologic phenotype. These results are in contrast with the previously proposed theory that a loss of function is the underlying mechanism in SOD1-related motor neuron disease and should be considered before application of previously proposed SOD1 silencing as a treatment option for amyotrophic lateral sclerosis.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/genética , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica , Criança , Pré-Escolar , Mutação da Fase de Leitura , Humanos , Masculino , Linhagem , Síndrome
11.
Biochim Biophys Acta Gen Subj ; 1863(6): 1108-1115, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974160

RESUMO

Proteasomes play a key role in maintaining cellular homeostasis by the proteolytic removal of proteins, including ubiquitinated proteins and/or oxidatively-damaged proteins. The proteasome inhibitor bortezomib (BTZ) has been reported to exert testicular toxicity in mice. In the current study, we treated SOD1-knockout (KO) mice with BTZ and investigated the issue of whether oxidative stress is involved in the development of testicular toxicity. The BTZ treatment significantly increased superoxide production and cell death in the testes of SOD1-KO mice compared to wild-type (WT) mice. We also found that high levels of both ubiquitinated proteins and p62 accumulated and underwent aggregation in the seminiferous tubules of BTZ-injected SOD1-KO mice. Furthermore, the proteolytic activities of proteasomes were significantly decreased in the testes of BTZ-injected SOD1-KO mice compared to their WT counterparts. These results suggest that a combination of oxidative stress caused by an SOD1 deficiency and proteasome inhibition by BTZ accelerates the impairment of proteasomes, which results in severe testicular damage in SOD1-KO mice.


Assuntos
Bortezomib/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteassoma/efeitos adversos , Superóxido Dismutase-1/deficiência , Testículo , Ubiquitinação/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Masculino , Camundongos , Camundongos Knockout , Inibidores de Proteassoma/farmacologia , Testículo/lesões , Testículo/metabolismo , Testículo/fisiologia
12.
Exp Dermatol ; 28(4): 485-492, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677217

RESUMO

Reactive oxygen species (ROS) impair wound healing through destructive oxidation of intracellular proteins, lipids and nucleic acids. Intracellular superoxide dismutase (SOD1) regulates ROS levels and plays a critical role in tissue homoeostasis. Recent evidence suggests that age-associated wound healing impairments may partially result from decreased SOD1 expression. We investigated the mechanistic basis by which increased oxidative stress links to age-associated impaired wound healing. Fibroblasts were isolated from unwounded skin of young and aged mice, and myofibroblast differentiation was assessed by measuring α-smooth muscle actin and collagen gel contraction. Excisional wounds were created on young and aged mice to study the healing rate, ROS levels and SOD1 expression. A mechanistic link between oxidative stress and fibroblast function was explored by assessing the TGF-ß1 signalling pathway components in young and aged mice. Age-related wounds displayed reduced myofibroblast differentiation and delayed wound healing, consistent with a decrease in the in vitro capacity for fibroblast-myofibroblast transition following oxidative stress. Young fibroblasts with normal SOD1 expression exhibited increased phosphorylation of ERK in response to elevated ROS. In contrast, aged fibroblasts with reduced SOD1 expression displayed a reduced capacity to modulate intracellular ROS. Collectively, age-associated wound healing impairments are associated with fibroblast dysfunction that is likely the result of decreased SOD1 expression and subsequent dysregulation of intracellular ROS. Strategies targeting these mechanisms may suggest a new therapeutic approach in the treatment of chronic non-healing wounds in the aged population.


Assuntos
Envelhecimento/metabolismo , Fibroblastos/fisiologia , Superóxido Dismutase-1/deficiência , Cicatrização , Animais , Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo
13.
Free Radic Biol Med ; 129: 97-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30223018

RESUMO

A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.


Assuntos
DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Superóxido Dismutase-1/genética , 4-Nitroquinolina-1-Óxido/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Fúngico/metabolismo , Recombinação Homóloga , Peróxido de Hidrogênio/farmacologia , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Paraquat/farmacologia , Fleomicinas/farmacologia , Quinolonas/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Reparo de DNA por Recombinação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/deficiência
14.
Cell Commun Signal ; 16(1): 28, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891006

RESUMO

BACKGROUND: SOD1 is an abundant enzyme that has been studied as a regulator of the antioxidant defence system, and this enzyme is well known for catalyzing the dismutation of superoxide into hydrogen peroxide. However the SOD1 in the progress of NPC and underlying mechanisms remain unclear. METHODS: In NPC tissue samples, SOD1 protein levels were measured by Western blot and immunohistochemical (IHC) staining. mRNA levels and SOD1 activity were monitored by qRT-PCR and SOD activity kit, respectively. Kaplan-Meier survival analysis was performed to explore the relationship between SOD1 expression and prognosis of NPC. The biological effects of SOD1 were investigated both in vitro by CCK-8, clonogenicity and apoptosis assays and in vivo by a xenograft mice model. Western blotting, ROS assay and triglyceride assays were applied to investigate the underlying molecular mechanism of pro-survival role of SOD1 in NPC. RESULTS: We observed a significant upregulation of SOD1 in NPC tissue and high SOD1 expression is a predictor of poor prognosis and is correlated with poor outcome. We confirmed the pro-survival role of SOD1 both in vitro and in vivo. We demonstrated that these mechanisms of SOD1 partly exist to maintain low levels of the superoxide anion and to avoid the accumulation of lipid droplets via enhanced CPT1A-mediated fatty acid oxidation. CONCLUSIONS: The results of this study indicate that SOD1 is a potential prognostic biomarker and a promising target for NPC therapy.


Assuntos
Metabolismo dos Lipídeos , Carcinoma Nasofaríngeo/patologia , Superóxido Dismutase-1/metabolismo , Animais , Apoptose , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
15.
Invest Ophthalmol Vis Sci ; 59(3): 1675-1681, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625494

RESUMO

Purpose: The superoxide dismutase-1 knockout (Sod1-/-) mouse is an age-related dry eye mouse model. We evaluated the role of 2% rebamipide ophthalmic solution on the conjunctiva and ocular surface alterations in Sod1-/- mice. Methods: Rebamipide eye drops (2%) were instilled in six 50-week-old male Sod1-/- mice and six C57BL/6 strain wild-type (WT) male mice four times a day for 2 weeks. Aqueous tear secretion quantity and tear film breakup time measurements as well as vital stainings were performed. Immunohistochemistry staining of the conjunctiva was performed using SAM pointed domain-containing ETS transcription factor (SPDEF), transglutaminase-1, and involucrin antibodies. Quantitative RT-PCR was carried out to study mRNA expression of the same markers. Results: The mean tear quantities showed no significant changes in both mice strains after treatment (P = 0.24). The mean tear film breakup time (P = 0.003) and vital staining scores significantly improved in the Sod1-/- mice after treatment. Treatment with 2% rebamipide eye drops significantly decreased the corneal fluorescein (P = 0.0093) and Rose Bengal (P = 0.002) staining scores in the Sod1-/- mice. We showed a notable increase in SPDEF and a marked decrease in transglutaminase-1 and involucrin immunohistochemistry stainings, together with a significant increase in SPDEF (P = 0.0003) and a significant decline in transglutaminase-1 (P = 0.0072) and involucrin (P = 0.009) mRNA expression after treatment in the Sod1-/- mice. Conclusions: Topical use of 2% rebamipide drops was observed to improve conjunctival epithelial differentiation and suppress keratinization in the Sod1-/- mice.


Assuntos
Alanina/análogos & derivados , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Túnica Conjuntiva/efeitos dos fármacos , Síndromes do Olho Seco/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Quinolonas/farmacologia , Superóxido Dismutase-1/deficiência , Alanina/farmacologia , Animais , Biomarcadores/metabolismo , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Lágrimas/metabolismo
16.
Cell Death Dis ; 9(2): 250, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445154

RESUMO

Microglia activation is a commonly pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a devastating disorder characterized by a selective motor neurons degeneration. Whether such activation might represent a causal event rather than a secondary epiphenomenon remains elusive. Here, we show that CNS-delivery of IL-4-via a lentiviral-mediated gene therapy strategy-skews microglia to proliferate, inducing these cells to adopt the phenotype of slowly proliferating cells. Transcriptome analysis revealed that IL-4-treated microglia express a broad number of genes normally encoded by embryonic microglia. Since embryonic microglia sustain CNS development, we then hypothesized that turning adult microglia to acquire such phenotype via IL-4 might be an efficient in vivo strategy to sustain motor neuron survival in ALS. IL-4 gene therapy in SOD1G93A mice resulted in a general amelioration of clinical outcomes during the early slowly progressive phase of the disease. However, such approach did not revert neurodegenerative processes occurring in the late and fast progressing phase of the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Transplante de Medula Óssea , Terapia Genética/métodos , Interleucina-4/genética , Microglia/metabolismo , Proteínas do Tecido Nervoso/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/genética , Interleucina-4/administração & dosagem , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Cultura Primária de Células , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Transcriptoma , Transplante Homólogo
17.
J Toxicol Environ Health A ; 81(5): 106-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29279024

RESUMO

Studies have linked exposure to ultrafine particulate matter (PM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism underlying observed adverse vascular effects. Advanced age is one factor known to decrease antioxidant defenses and confer susceptibility to the detrimental vascular effects seen following PM exposure. The present study was designed to investigate the vasomotor responses following ultrafine PM exposure in wild type (WT) and superoxide dismutase 2-deficient (SOD2+/-) mice that possess decreased antioxidant defense. Thoracic aortic rings isolated from young and aged WT and SOD2+/- mice were exposed to ultrafine PM in a tissue bath system. Aortic rings were then constricted with increasing concentrations of phenylephrine, followed by relaxation with rising amounts of nitroglycerin (NTG). Data demonstrated that ultrafine PM decreased the relaxation response in both young WT and young SOD2+/- mouse aortas, and relaxation was significantly reduced in young SOD2+/- compared to WT mice. Ultrafine PM significantly diminished the NTG-induced relaxation response in aged compared to young mouse aortas. After ultrafine PM exposure, the relaxation response did not differ markedly between aged WT and aged SOD2+/- mice. Data demonstrated that the greater vascular effect in aortic rings in aged mice ex vivo after ultrafine PM exposure may be attributed to ultrafine PM-induced oxidative stress and loss of antioxidant defenses in aged vascular tissue. Consistent with this conclusion is the attenuation of NTG-induced relaxation response in young SOD2+/- mice. ABBREVIATIONS: H2O2: hydrogen peroxide; NTG: nitroglycerin; PAH: polycyclic aromatic hydrocarbons; PE: l-phenylephrine; PM: particulate matter; ROS: reactive oxygen species; SOD2: superoxide dismutase 2 deficient; WT: wild type.


Assuntos
Doenças da Aorta/metabolismo , Material Particulado/toxicidade , Sistema Vasomotor/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/metabolismo , Sistema Vasomotor/efeitos dos fármacos
18.
Stem Cell Rev Rep ; 13(5): 686-698, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28710685

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Pericitos/transplante , Superóxido Dismutase-1/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Catalase/genética , Catalase/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Pericitos/citologia , Pericitos/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/deficiência , Análise de Sobrevida
19.
Biosci Biotechnol Biochem ; 81(8): 1586-1590, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585468

RESUMO

One new (1, SZMT01) and one known (2) anti-aging substances were isolated from Shenzhou honey peach fruit. Their structures were elucidated by spectroscopic methods and chemical derivatization, and the result reveals that these two compounds are sesquiterpene glucosides. SZMT01 possesses a new glycosylation with an ester linkage at one terminal in an acyclic sesquiterpenoid which is the end of a double bond at another terminal. Both compounds extend the replicative lifespan of K6001 yeast strain at doses of 7.5 and 25 µM. Then, to understand the action mechanism involved, we performed an anti-oxidative experiment on SZMT01. The result revealed that treatment with SZMT01 increased the survival rate of yeast under oxidative stress. Moreover, the lifespans of sod1 and sod2 mutant yeast strains with a K6001 background were not affected by SZMT01. These results demonstrate that anti-oxidative stress performs important roles in anti-aging effects of SZMT01.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Prunus persica/química , Saccharomyces cerevisiae/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antioxidantes/isolamento & purificação , Frutas/química , Expressão Gênica , Glucosídeos/isolamento & purificação , Glicosilação , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/isolamento & purificação , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
20.
Adv Exp Med Biol ; 978: 255-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523551

RESUMO

Despite being clinically described 150 years ago, the mechanisms underlying amyotrophic lateral sclerosis (ALS) pathogenesis have not yet been fully understood. Studies in both animal models of ALS and human patients reveal a plethora of alterations such as increased glutamate-mediated excitotoxicity, redox stress, increased apoptosis, defective axonal transport, protein-misfolding events, mitochondrial impairment and sustained unregulated immune responses. Regardless of being sporadic or familiar ALS, the final outcome at the cellular level is the death of upper and lower motor neurons, and once diagnosed, ALS is typically lethal within the next 5 years. There are neither clear biomarkers nor therapeutic or disease-modifying treatments for ALS.Accumulating evidence supports the concept that epigenetic-driven modifications, including altered chromatin remodelling events, RNA editing and non-coding RNA molecules, might shed light into the pathogenic mechanisms underlying sporadic/familiar ALS onset and/or severity to facilitate the identification of effective therapies, early diagnosis and potentially early-stage therapeutic interventions to increase the survival outcome of ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Acetilação , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Metilação de DNA/genética , Modelos Animais de Doenças , Exposição Ambiental , Interação Gene-Ambiente , Código das Histonas/genética , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/fisiologia , Humanos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Riluzol/uso terapêutico , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...